Giuseppe De Laurentis
LTP Seminar
Find these slides at gdelaurentis.github.io/slides/psi-ltp-seminar
Amplitudes and Cross Sections
Perturbation Theory
Better predictions require both more loops and higher multiplicity.
|
|
|||||
4 | 5 | 6 | 7 | 8 | ||
|
0 | |||||
1 | ||||||
2 | ||||||
3 |
Multi-Loop Amplitudes from Trees
Analytics from Numerics
Finite Fields
Common-Denominator Ansatz
Tools of the Trade
System Size | Timing |
---|---|
8192 | 8 s |
16384 | 51 s |
32768 | 6m 30s |
Taming the Algebraic Complexity
based on: GDL, Page (JHEP 12 (2022) 140)
Least Common Denominator Redux
Multivariate Partial Fractions
Kinematics | # Poles ($W$) | LCD Ansatz | Partial-Fraction Ansatz | Rational Functions |
5-point massless | 30 | 29k | 4k | $\sim$200 KB |
Kinematics | # Poles ($W$) | LCD Ansatz | Partial-Fraction Ansatz | Rational Functions |
5-point 1-mass | >200 | >5M | $\sim$40k | $\sim$25 MB |
Try it yourself
pip install lips pyadic
Thanks for your attention!
Questions?
$\boldsymbol p\,$-adic Numbers
pyAdic
from pyadic import ModP
from fractions import Fraction as Q
ModP(Q(7, 13), 2147483647)
<<< 1817101548 % 2147483647
# Can also go back to rationals
from pyadic.finite_field import rationalise
rationalise(ModP(Q(7, 13), 2147483647))
<<< Fraction(7, 13)
Lips
from lips import Particles
from lips.fields.field import Field
# Random finite field phase space point, arbitrary multiplicity
multiplicity = 5
PSP = Particles(multiplicity, field=Field("finite field", 2 ** 31 - 1, 1), seed=0)
# Evaluate an arbitrary complicated expression
PSP("(8/3s23⟨24⟩[34])/(⟨15⟩⟨34⟩⟨45⟩⟨4|1+5|4])")
<<< 683666045 % 2147483647
Representations of the Lorentz group
(Recall: $\mathfrak{so}(1, 3)_\mathbb{C} \sim \mathfrak{su}(2) \times \mathfrak{su}(2)$)$(j_{-},j_{+})$ | dim. | name | quantum field | kinematic variable |
---|---|---|---|---|
(0,0) | 1 | scalar | $h$ | m |
(0,1/2) | 2 | right-handed Weyl spinor | $\chi_{R\,\alpha}$ | $\lambda_\alpha$ |
(1/2,0) | 2 | left-handed Weyl spinor | $\chi_L^{\,\dot\alpha}$ | $\bar{\lambda}^{\dot\alpha}$ |
(1/2,1/2) | 4 | rank-two spinor/four vector | $A^\mu/A^{\dot\alpha\alpha}$ | $P^\mu/P^{\dot\alpha\alpha}$ |
(1/2,0)$\oplus$(0,1/2) | 4 | bispinor (Dirac spinor) | $\Psi$ | $u, v$ |
Spinor Covariants
Weyl spinors are sufficient for massless particles:
$\text{det}(P^{\dot\alpha\alpha})=m^2 \rightarrow 0 \quad \Longrightarrow \quad P^{\dot\alpha\alpha} = \bar\lambda^{\dot\alpha}\lambda^\alpha$.In terms of 4-momentum components we have:
$$ \lambda\_\alpha=\frac{1}{\sqrt{p^0+p^3}}\begin{pmatrix}p^0+p^3 \\\ p^1+ip^2\end{pmatrix} \, , \;\;\; \lambda^\alpha=\epsilon^{\alpha\beta} \lambda_\beta =\frac{1}{\sqrt{p^0+p^3}}\begin{pmatrix}p^1+ip^2 \\\ -p^0+p^3\end{pmatrix} $$ $\bar\lambda\_{\dot\alpha}=\frac{1}{\sqrt{p^0+p^3}}\begin{pmatrix}p^0+p^3 \\\ p^1-ip^2\end{pmatrix} \, , \;\;\; \bar\lambda^{\dot\alpha}=\epsilon^{\dot\alpha\dot\beta}\bar\lambda_{\dot\beta}=\frac{1}{\sqrt{p^0+p^3}}\begin{pmatrix}p^1-ip^2 \\\ \-p^0+p^3\end{pmatrix}$ Spinor Invariants
Example Simplifications
uubggg pmpmp Nf1 #3
is equal to $ -\frac{[32]^3 [41]^3}{2 [31]^3 [42]^3} $ggggg mpmpp Nf1 # 9
Example of cut diagram
Only singularity involving $m_{top}$ (from pentagon contributions)
$16 |S_{1×2×3×4}| = −s_{12} , s_{23} , s_{34} , \langle 1 |2 + 3|4] , \langle 4|2 + 3|1] + m^2_{top} , tr_5(1234)^2$
We can generate point near this singularity in a similar fashion.
Structure of the coefficients
The massive external leg (the Higgs) is easily accomodated by considering it as a pair of massless particles (think decay products).
In the end all dependance on $P_{Higgs}$ is removed by using momentum conservation.
The coefficients are Taylor expasions in $m_{top}$:
$C^{(0)} + m^2_{top} C^{(2)}$.
with $C^{(0)}$ and $C^{(2)}$ resabling the six-gluon coefficients.