LoopFest XXI
Find these slides at gdelaurentis.github.io/slides/loopfestxxi_june2023
State-of-the-Art of
$\boldsymbol{\mathcal{A}^{(2-\textbf{loop})}_{,n}}$
Sizable NNLO Corrections to $\boldsymbol{q\bar q \rightarrow \gamma\gamma\gamma}$
Gauge-Invariant Subamplitudes
${\color{green} A^{(2, 0)}_{\,2q3\gamma} }$: | ${\color{green} A^{(2, N_f)}_{\,2q3\gamma} }$: | Previously known | ||
${\color{red} A^{(2, 1)}_{\,2q3\gamma} }$: | ${\color{red} A^{(2, \tilde{N}_f)}_{\,2q3\gamma} }$: | New in this work |
Generalized Unitarity
New Features of the Reduction
Singular
+ linear algebra.
Finite remainders & the
Rational / Transcendental split
The Least Common Denominator
The Numerator Ansatz
Taming the Algebraic Complexity
C++ Program
C++
) for evaluation over $\mathbb{F}_p$;
Kinematics | # Poles ($W$) | LCD Ansatz | Partial-Fraction Ansatz | Rational Functions |
5-point massless | 30 | 29k | 4k | $\sim$300 KB |
5-point 1-mass | >200 | >5M | $\sim$40k | $\sim$25 MB |
Finite Fields
$\boldsymbol p,$-adic Numbers
pyAdic
from pyadic import ModP
from fractions import Fraction as Q
ModP(Q(7, 13), 2147483647)
<<< 1817101548 % 2147483647
# Can also go back to rationals
from pyadic.finite_field import rationalise
rationalise(ModP(Q(7, 13), 2147483647))
<<< Fraction(7, 13)
Lips
from lips import Particles
from lips.fields.field import Field
# Random finite field phase space point, arbitrary multiplicity
multiplicity = 5
PSP = Particles(multiplicity, field=Field("finite field", 2 ** 31 - 1, 1), seed=0)
# Evaluate an arbitrary complicated expression
PSP("(8/3s23⟨24⟩[34])/(⟨15⟩⟨34⟩⟨45⟩⟨4|1+5|4])")
<<< 683666045 % 2147483647
Representations of the Lorentz group
(Recall: $\mathfrak{so}(1, 3)_\mathbb{C} \sim \mathfrak{su}(2) \times \mathfrak{su}(2)$)$(j_{-},j_{+})$ | dim. | name | quantum field | kinematic variable |
---|---|---|---|---|
(0,0) | 1 | scalar | $h$ | m |
(0,1/2) | 2 | right-handed Weyl spinor | $\chi_{R\,\alpha}$ | $\lambda_\alpha$ |
(1/2,0) | 2 | left-handed Weyl spinor | $\chi_L^{\,\dot\alpha}$ | $\bar{\lambda}^{\dot\alpha}$ |
(1/2,1/2) | 4 | rank-two spinor/four vector | $A^\mu/A^{\dot\alpha\alpha}$ | $P^\mu/P^{\dot\alpha\alpha}$ |
(1/2,0)$\oplus$(0,1/2) | 4 | bispinor (Dirac spinor) | $\Psi$ | $u, v$ |
Spinor Covariants
Weyl spinors are sufficient for massless particles:
$\text{det}(P^{\dot\alpha\alpha})=m^2 \rightarrow 0 \quad \Longrightarrow \quad P^{\dot\alpha\alpha} = \bar\lambda^{\dot\alpha}\lambda^\alpha$.In terms of 4-momentum components we have:
$$ \lambda\_\alpha=\frac{1}{\sqrt{p^0+p^3}}\begin{pmatrix}p^0+p^3 \\\ p^1+ip^2\end{pmatrix} \, , \;\;\; \lambda^\alpha=\epsilon^{\alpha\beta} \lambda_\beta =\frac{1}{\sqrt{p^0+p^3}}\begin{pmatrix}p^1+ip^2 \\\ -p^0+p^3\end{pmatrix} $$ $\bar\lambda\_{\dot\alpha}=\frac{1}{\sqrt{p^0+p^3}}\begin{pmatrix}p^0+p^3 \\\ p^1-ip^2\end{pmatrix} \, , \;\;\; \bar\lambda^{\dot\alpha}=\epsilon^{\dot\alpha\dot\beta}\bar\lambda_{\dot\beta}=\frac{1}{\sqrt{p^0+p^3}}\begin{pmatrix}p^1-ip^2 \\\ \-p^0+p^3\end{pmatrix}$ Spinor Invariants
based on: GDL, Page (JHEP 12 (2022) 140)
Least Common Denominator Redux
Multivariate Partial Fractions