syngular.field
- class syngular.field.Field(*args)
A class representing number fields.
- property I
- property characteristic
- property digits
- epsilon(shape=(1,))
- property i
- property is_algebraically_closed
- property j
- property name
- random(shape=(1,))
- random_element(*args, **kwargs)
- set(*args)
(name, characteristic, digits)
- property singular_notation
- sqrt(val)
- property tollerance
- property ε
syngular.ring
syngular.qring
- syngular.qring.QRing
alias of
QuotientRing
- class syngular.qring.QuotientRing(ring, ideal)
syngular.ideal
- class syngular.ideal.Ideal(ring, generators)
- property codim
- property codims
- delete_cached_properties()
- property dim
- property dims
- eliminate(var_range)
- property generators
- generators_eval(**kwargs)
- property groebner_basis
- property indepSet
- property indepSets
- static intersection(*args)
Intersection of Ideals - wrapper around & operator for chained intersection.
- property is_unit_ideal
- property leadGBmonomials
Gives the leading monomials of the Groebner basis polynomials.
- property minbase
- property primary_decomposition
- property radical
Returns the radical of the ideal.
- reduce(other)
Remainder of division, i.e. reduction.
- squoosh()
- test_valid_ideal()
- to_full_ring()
- to_qring(other)
- syngular.ideal.monomial_to_exponents(variables, monomial)
Converts a monomial in the variables of a polynomial ring into a numpy.array of exponents.
- syngular.ideal.reduce(poly, ideal)