syngular.field

class syngular.field.Field(*args)

A class representing number fields.

property I
property characteristic
property digits
epsilon(shape=(1,))
property i
property is_algebraically_closed
property j
property name
random(shape=(1,))
random_element(*args, **kwargs)
set(*args)

(name, characteristic, digits)

property singular_notation
sqrt(val)
property tollerance
property ε

syngular.ring

class syngular.ring.Ring(field, variables, ordering)
property field
property ordering

Monomial ordering

random_point(field, seed=None)

Returns a random numerical point in the given field on the zero ideal of the ring.

property variables
zero_ideal()

Returns the zero ideal ⟨0⟩ in the ring.

syngular.qring

syngular.qring.QRing

alias of QuotientRing

class syngular.qring.QuotientRing(ring, ideal)

syngular.ideal

class syngular.ideal.Ideal(ring, generators)
property codim
property codims
delete_cached_properties()
property dim
property dims
eliminate(var_range)
property generators
generators_eval(**kwargs)
property groebner_basis
property indepSet
property indepSets
static intersection(*args)

Intersection of Ideals - wrapper around & operator for chained intersection.

property is_unit_ideal
property leadGBmonomials

Gives the leading monomials of the Groebner basis polynomials.

property minbase
property primary_decomposition
property radical

Returns the radical of the ideal.

reduce(other)

Remainder of division, i.e. reduction.

squoosh()
test_valid_ideal()
to_full_ring()
to_qring(other)
syngular.ideal.monomial_to_exponents(variables, monomial)

Converts a monomial in the variables of a polynomial ring into a numpy.array of exponents.

syngular.ideal.reduce(poly, ideal)

Module contents