Partial Amplitudes & Finite Remainders
$\circ$ Amplitude (integrands) can be written as (for a suitable choice of master integrals)
$$
\displaystyle A(\lambda, \tilde\lambda, \ell) =
\sum_{\substack{\Gamma,\\ i \in M_\Gamma \cup S_\Gamma}} \, c_{\,\Gamma,i}(\lambda, \tilde\lambda, \epsilon) \, \frac{m_{\Gamma,i}(\lambda\tilde\lambda, \ell)}{\textstyle \prod_{j} \rho_{\,\Gamma,j}(\lambda\tilde\lambda, \ell)} \;\; \xrightarrow[]{\int d^D\ell} \;\; \sum_{\substack{\Gamma,\\ i \in M_\Gamma}} \frac{ \sum_{k=0}^{\text{finite}} \, {\color{red}c^{(k)}_{\,\Gamma, i}}(\lambda, \tilde\lambda) \, \epsilon^k}{\prod_j (\epsilon - a_{ij})} \, {\color{orange}I_{\Gamma, i}}(\lambda\tilde\lambda, \epsilon)
$$
$\circ$ $\Gamma$: topologies $\quad\circ$ $M_\Gamma$: master integrands $\quad\circ$ $S_\Gamma$: surface terms
$\circ$ All physical information is contained in the finite remainders, at two loops
Weinzierl ('11)
$$
\underbrace{\mathcal{R}^{(2)}}_{\text{finite remainder}} = \mathcal{A}^{(2)}_R \underbrace{- \quad I^{(1)}\mathcal{A}^{(1)}_R \quad - \quad I^{(2)}\mathcal{A}^{(0)}_R}_{\text{divergent + convention-dependent finite part}} + \mathcal{O}(\epsilon)
$$
Catani ('98)
Becher, Neubert ('09)
Gardi, Magnea ('09)
$\phantom{\circ}$ $\mathcal{A}^{(1)}_R$ to order $\epsilon^2$ is still needed to build $\mathcal{R}^{(2)}$, but there is no real reason to reconstruct it.
$$
\textstyle \mathcal{R}(\lambda, \tilde\lambda) = \sum_i \color{red}{r_{i}(\lambda,\tilde\lambda)} \, \color{orange}{h_i(\lambda\tilde\lambda)}
$$
$\circ$ Goal: reconstruct $\color{red}{r_{i}(\lambda,\tilde\lambda)}$ from numerical samples in a field $\mathbb{F}$
$\mathbb{F}_p$: von Manteuffel, Schabinger ('14);
$\phantom{\mathbb{F}_p}$ Peraro ('16)
$\mathbb{C}$: GDL, Maitre ('19);
$\mathbb{Q}_p$: GDL, Page ('22)
Setting up the Calculation
$\circ$ Original computation
[1] was performed with
Caravel
$$
\require{color}
\displaystyle \sum_{\text{states}} \, \prod_{\text{trees}} A^{\text{tree}}(\lambda, \tilde\lambda, \ell)\big|_{\text{cut}_{\Gamma}} = \sum_{\substack{\Gamma' \ge \Gamma, \\ i \in M_\Gamma' \cup S_\Gamma'}} \kern-2mm {\color{black}{c_{\,\Gamma',i}(\lambda, \tilde\lambda)}} \, \frac{m_{\Gamma',i}(\lambda\tilde\lambda, \ell)}{\displaystyle \prod_{j\in P_{\Gamma'} / P_{\Gamma}} \rho_{j}(\lambda\tilde\lambda, \ell)}\Bigg|_{\text{cut}_\Gamma}
$$
$\star$ Numerical Berends-Giele recursion for LHS, solve for coeffs. in RHS.
$\star$ IBP reduction = decomposition on RHS, $\; m_{\Gamma,i} \in M_\Gamma \cup S_\Gamma$
$\circ$ This computation started from the ancillaries files of
[1] Abreu, Febres Cordero, Ita, Klinkert, Page, Sotnikov
1. Wrote a Python script to split the 1.4 GB ancillaries into >10k files
2. Compile into 18.2 GB of C++ binaries (for reference Caravel
compiles into approx. 5 GB)
3. Obtain $\mathbb{F}_p$ evaluations of the form factors (each takes approx. 1 sec per point)
4. Recombine triplets of form factors into helicity amplitudes
$\circ$ Assemble helicity amplitudes into 3 categories: $\mathcal{R}_{\bar qQ\bar QqV}^{\text{NMHV}} ,\, \mathcal{R}_{\bar qggqV}^{\text{MHV}} ,\, \mathcal{R}_{\bar qggqV}^{\text{NMHV}}$
Guiding Principles
$\circ$ Amplitude should be gauge and Lorentz invariant, and little group covariant
${\color{red} ✗}$ gauge dependence, e.g. through reference vectors
${\color{red} ✗}$ tensor decompositions $\epsilon_\mu T^\mu$, polarizations are needed for simplifications
${\color{greeN} ✓}$ $\epsilon_\mu \rightarrow \epsilon_{\alpha\dot\alpha}$, $P^\mu \rightarrow \lambda_\alpha \tilde\lambda_{\dot\alpha}$; all $\alpha, \dot\alpha$ indices contracted
$\circ$ The singularity structure should be manifest in $\mathbb{C}$ (exprs will then be better behaved in $\mathbb{R}$ too)
${\color{red} ✗}$ Rational reparametrisations of the kinematics change the denominator structure
${\color{red} ✗}$ If a function is neither even nor odd, forcing the split misses cancellations
${\color{greeN} ✓}$ Chiral cancellations yield true Least Common Denominator
${\color{greeN} ✓}$ Work off the real slice: $P^\mu \in \mathbb{C}^4$, $\lambda_\alpha \neq \tilde\lambda_{\dot\alpha}^\dagger$. In practice, $P^{\mu=y}\in i\mathbb{Q}\Rightarrow \lambda_{\alpha} \in \mathbb{F}_p \text{ or } \mathbb{Q}_p$
$\circ$ Focus only on final physical expressions
${\color{red} ✗}$ Unphysical intermediate steps may be unnecessarily complicated
${\color{greeN} ✓}$ Bypass all intermediate steps with numerical evaluations