Large Logarithms from Big Rapidity Gaps
$\circ\,$ In the forward limit $s \gg t$ (large CoM energy vs. momentum transfer), e.g. $2\to 2$ scattering,
$\phantom{\circ}\,$ final state emissions develop large rapidity gaps. The cross section grows as
$$
\sigma \approx \mathcal{O}\big(\alpha_s^n \log^n(s/|t|)\big )
$$
$\phantom{\circ}\,$ which is unphysically large (e.g. it violates the Froissart bound).
$\circ\,$ The BFKL kernel captures the exponentiation of these large logarithms,
$\phantom{\circ}\,$ allowing us to resum their contribution to the cross section.
Fadin, Kuraev, Lipatov `75;$\;$ Balitsky, Lipatov `78
$\circ\,$ In this kinematic limit, known as Multi-Regge Kinematics (MRK), an effective particle is
$\phantom{\circ}\,$ exchanged in the t-channel, a Reggeon, from which more rapidity-gapped radiation can be emitted.
Amplitude Factorization in MRK and NMRK
$\circ\;$ In the (N)MRK we can picture the amplitude as follows
Images adapted from Byrne `23
$\phantom{\circ}\;$ where: the ziggly line is the Regge trajectory $\mathcal{R}$, the green blobs are impact factors $\mathcal{C}$, the blue
$\phantom{\circ}\;$ blob is a one-emission central vertex $\mathcal{V}_g$, and the gray blob is a two-emission central vertex $\mathcal{V}_{gg}$.
$\circ\;$ The amplitude factorise as follows (very schematically)
$$
\mathcal{A}_4 \approx \mathcal{C} \, \mathcal{R} \, \mathcal{C} \, , \qquad
\mathcal{A}_5 \approx \mathcal{C} \, \mathcal{R} \, \mathcal{V}_g \, \mathcal{R} \, \mathcal{C} \, , \qquad
\mathcal{A}_6 \approx \mathcal{C} \, \mathcal{R} \, \mathcal{V}_{gg} \, \mathcal{R} \, \mathcal{C}
$$
$\phantom{\circ}\;$ where each component admits an expansion in powers of $\alpha_s$, thus e.g. $\mathcal{A}_4^{(1)}$ gives us $\mathcal{C}^{(1)}$ and $\mathcal{R}^{(1)}$
Leading Order Kernel Components
Leading-Log (LL) Resummation: $\mathcal{O}\big(\alpha_s^n \log^n(s/|t|)\big )$
$\circ\,$ The two components of the leading order (LO) BFKL kernel,
$\phantom{\circ}\,$ required for resummation of leading logarithms (LL), are
Images from Byrne, Del Duca, Dixon, Gardi, Smillie
$\phantom{\circ}\,$ (a) is a correction to the Regge trajectory $\mathcal{R}^{(1)}$
$\phantom{\circ}\,$ (b) is the leading order central emission vertex (CEV) $\mathcal{V}_g^{(0)}$ in MRK
NLO Kernel
Next-To-Leading-Log (NLL) Resummation: $\mathcal{O}\big(\alpha_s^n \log^{n-1}(s/|t|)\big )$
$\phantom{\circ}\,$ (a) two-loop correction to the Regge trajectory, $\mathcal{R}^{(2)}$
$\phantom{\circ}\,$ (b) one-loop correction to the one-emission CEV $\mathcal{V}_g^{(1)}$ in MRK
$\phantom{\circ}\,$ (c) leading two-emission CEV $\mathcal{V}_{gg}^{(0)}$, this requires an next-to-MRK (NMRK) tree computation:
$\phantom{\circ}\,\kern4mm$ the two central gluons are not rapidity gapped
NNLO Kernel
NNLL Resummation: $\mathcal{O}\big(\alpha_s^n \log^{n-2}(s/|t|)\big )$
$\phantom{\circ}\,$ (a) Three loop $2\to 2$ MRK, from three Reggeons to three-loop correction to the trajectory, $\mathcal{R}^{(3)}$
Falcioni, Gardi, Maher, Milloy, Vernazza `21;$\;$ Caola, Chakraborty, Gambuti, von Manteuffel, Tancredi `21
$\phantom{\circ}\,$ (b) Two-loop correction to the central emission vertex $\mathcal{V}_g^{(2)}$ for one gluon
Abreu, GDL, Falcioni, Gardi, Milloy, Vernazza `24;$\;$ Buccioni, Caola, Devoto, Gambuti `24
$\phantom{\circ}\,\kern9mm$ by expanding in the MRK limit the recently available two-loop five-parton amplitudes
GDL, Ita, Klinkert, Sotnikov `23;$\;$ GDL, Ita, Sotnikov `23;$\;$ Agarwal, Buccioni, Devoto, Gambuti, von Manteuffel, Tancredi `23
$\phantom{\circ}\,$ (d) The last missing component is the next-to-maximally-helicity-violiating (NMHV) one-loop
$\phantom{\circ}\,\kern9mm$ two-gluon CEV $\mathcal{V}_{g^{+}g^{-}}^{(0)}$,
this requires expanding in NMRK the one-loop six-gluon amplitude
Byrne, GDL, Del Duca, Gardi, Smillie - in progress; GDL, Maitre `19
$\phantom{\circ}\,$ (e) The leading CEV for three emissions $\mathcal{V}_{ggg}^{(0)}$ from an NNMRK limit at tree level
Byrne, Del Duca, Gardi, Mo, Smillie `25
Minimal Variables for (N)MRK
$\circ$ The problem is most easily formulated in terms of lightcone momenta
$$
\begin{array}{rllll}
p \; = & (p^+, & p^-, & p_\perp , & \bar p_\perp ) \\
= & (E + p_z, & E - p_z, & p_x + i p_y, & p_x - i p_y)
\end{array}
$$
$\circ$ We can picture the MRK limit as follows
$$
p_{i}^{\;j} = \left(
\begin{array}{cccc}
0 & \text{mc} & 0 & 0 \\
\text{mc} & 0 & 0 & 0 \\
p_4^{+} X_{34} & \text{mc} & \text{mc} & \text{mc} \\
p_4^{+} & \text{mc} & \frac{-q_1}{z − 1} & \frac{-\bar q_1}{\bar z − 1} \\
p_4^{+} / X_{45} & \text{mc} & \frac{q_1 z}{z − 1} & \frac{\bar q_1\bar z }{\bar z − 1}
\end{array}\right) \\[3mm]
\text{mc = fixed by momentum conservation}
$$
$\circ\,$ The MRK limit is a two-variable problem $z, \bar z$;
$\phantom{\circ}\,$ $q_1, \bar q_1, p_4^+$ drop out by normalizing by the tree and $X_{34} \sim X_{45} \sim 1/x \gg 1$
$\circ$ The NMRK limit is a five-variable problem $z, \bar z, w, \bar w, X=X_{(45)}$, other variables drop out
Challenge from Spurious Cancellations
$\circ\,$ Amplitudes take the form:
$$
\textstyle \mathcal{A}^{(\ell)}_n = \sum_i c_i \, I_i
$$
$\phantom{\circ}\,$ with $c_i$ rational functions, $I_i$ transcendental master integrals
$\circ\,$ For $\mathcal{A}^{(2)}_5$ in the MRK limit we have:
$$
c_i \approx \frac{c_{i,-1}}{x} + c_{i,0} + \mathcal{O}(x)\; , \quad I_i \approx I_{i,0} + x I_{i,1} + \mathcal{O}(x)
$$
$\phantom{\circ}\,$ one spurious order in $x\rightarrow 0$ cancels between rational and transcendental.
$\circ\,$ For $\mathcal{A}^{(1)}_6$ in the NMRK limit we have (for the NMHV amplitude):
$$
\require{\cancel}
c_i \approx \frac{\cancelto{0}{c_{i,-8}}}{x^{-8}} + \dots + \frac{\cancelto{0}{c_{i,-1}}}{x} + c_{i,0} + \mathcal{O}(x)\; , \quad I_i \approx I_{i,0}+ \mathcal{O}(x)
$$
$\phantom{\circ}\,$ Problem: 8 orders of spurious cancellations in the (N)MRK parameter as $x\rightarrow 0$
Challenge from Spurious Cancellations (2)
$\circ\,$ The $\mathcal{A}^{(2)}_5$ coefficients are simple
> from antares_results.jjj.ggggg.mhv import lTerms; lTerms
< [Terms("""+(1⟨4|5⟩²)/(⟨1|2⟩⟨1|3⟩⟨2|3⟩)"""), Terms("""+(1⟨4|5⟩³)/(⟨1|2⟩²⟨3|4⟩⟨3|5⟩)"""), ...]
> len(str(lTerms[0])), max(map(len, map(str, lTerms)))
< 28, 630
$\circ\,$ The $\mathcal{A}^{(1)}_6$ NMHV coefficients are much more complex
> from antares_results.jjjj.gggggg.pmpmpm import coeffs; coeffs['box(1)']
< Terms("""+(-1/2j⟨1|2⟩⁴[1|2][2|3]⟨3|1+2|5]⁴)/(⟨1|3⟩⁴[4|5][5|6]⟨1|2+3|4]⟨3|1+2|6]s_123)""")
> len(str(coeffs['box(1)'])), max(map(len, map(str, coeffs.values())))
< 76, 346853
$\phantom{\circ}\,$ Some coefficients (three mass triangles, bubbles, rational part) are very complicated!
${\color{red} ✗}$ Analytic expansion is a no go. Run out of memory and time after 3 or 4 orders!
${\color{red} ✗}$ Numerical expansion with floating-point numbers is also too complicated.
$\phantom{{\color{red} ✗}}$ Say we input $x\approx 10^{-10}$ to have 10 digits to work with, we would lose (at least) 80 digits!
$p\kern0.2mm$-adic numbers
$\circ$ You may be familiar with finite field (integers modulo a prime)
Heller, von Manteuffel `14;$\;$ Peraro `16
$$
\displaystyle a \in \mathbb{F}_p : a \in \{0, \dots, p -1\} \; \text{ with } \; \{+, -, \times, \div\}
$$
$\phantom{\circ}$ Limits (and calculus) are not well defined in $\mathbb{F}_p$. We can make things zero, but not small:
$$
\displaystyle |a|_0 = 0 \; \text{if} \; a = 0 \; \text{else} \; 1 \quad \text{a.k.a. the trivial absolute value.}
$$
$\circ$ There exists just one more absolute value on the rationals, the $p$-adic absolute value.
Ostrowski's theorem 1916
$\circ$ Let's start from $p$-adic integers, instead of working modulo $p$, expand in powers of $p$
$$
\displaystyle a \in \mathbb{Z}_p : a_0 p^0 + a_1 p^1 + a_2 p^2 + \dots + \mathcal{O}(p^n)
$$
$\phantom{\circ}$ In some sense we are correcting the finite field result with more (subleading) information.
$\circ$ $p$-adic numbers $\mathbb{Q}_p$ allow for negative powers of $p$, (would be division by zero in $\mathbb{F}_p$!)
$$
\displaystyle a \in \mathbb{Q}_p : a_{-\nu} p^{-\nu} + \dots + a_0 + a_1 p^1 + \dots + \mathcal{O}(p^n)
$$
GDL, Page `22
$\circ$ The $p$-adic absolute value is defined as $|a|_p = p^\nu$.
$\phantom{\circ}$ Think of $p$ as a small quantity, $\epsilon$, even if it is a large prime (by the real absolute value, $|\,|_\infty$).
The $p\kern0.2mm$-adic (N)MRK Limit
$\circ$ The space of $p$-adic numbers is an ultrametric space, the triangle inequality is strengthened to:
$$
\displaystyle d(x,z)\leq \max \left\{d(x,y),d(y,z)\right\}
$$
$\phantom{\circ}$ This leads to better stability properties: adding two numbers can never result is a larger number!
$\circ$ A general kinematic evaluation at a $(2^{31}-1)$-adic phase space point
> from lips import Particles; from syngular import Field
> oPs = Particles(6, field=Field("padic", 2 ** 31 - 1, 9), seed=0) # create psp
> (1j * coeffs['bubble(1)'])(oPs) # evaluate the coefficient(s)
< 490010355 + 1085079429*2147483647 + 1676653899*2147483647^2 + 726358851*2147483647^3 + 1074867770*2147483647^4 + 133781189*2147483647^5 + 892424664*2147483647^6 + 1457115085*2147483647^7 + 2127645140*2147483647^8 + O(2147483647^9)
$\circ$ Manipulate phase space: set the (N)MRK parameter controlling the rapidity gap to be $x\approx p$
$$
\displaystyle 0 \leq \text{leading NMRK behavior} \leq p-1 + \mathcal{O}(2147483647^1)
$$
${\color{greeN} ✓}$ We still lose 1 digit per spurious pole (8 in total), but the result is now exact.
NMRK Analytic Reconstruction
Variables Ring & Least Common Denomiantors
$\circ\;$ We have a ring in 5 independent variables over a field $\mathbb{F}(=\mathbb{Q}_p)$
$$
\displaystyle \kern10mm R_{NRMK} = \mathbb{F}\big[ z, \bar z, w, \bar w, X(=X_{45}) \big]
$$
$\phantom{\circ}\;$ we need to recover rational functions in these five variables from numerical samples in $\mathbb{F}$.
$\circ\;$ The complexity is not driven just by the number of variables, but also by the sigularities
$$
\displaystyle \mathcal{D}_{\Delta_{3m}} = -4(-1+w)w(-1+\bar w)\bar w X^2 (-1+z) z (-1+\bar z) \bar z+ \\ (X z (\bar w+\bar z-\bar w \bar z+X\bar z)+w(\bar w-X (-1+z) \bar z+\bar w X(1-\bar z+z(-1+2\bar z))))^2
$$
$\phantom{\circ}\;$ alone has degreee 10. It appears up to cubic pole, making denominators exceed degree 30.
$\circ\;$ By comparison the most complicated singularity for $\mathcal{A}^{(2)}_5$ was $(z - \bar{z})$
$\circ\;$ Obtain least common denominators from a unviariate slice (think BCFW shift)
$$
\displaystyle z \rightarrow z + c_z t, \; \bar z \rightarrow \bar z + c_{\bar z} t, \; w \rightarrow w + c_{\bar w} t, \; \bar w \rightarrow \bar w + c_{\bar w} t, \; X \rightarrow X + c_X t
$$
$\circ\;$ In Least Common Denominator form the numerators are too complex,
$\phantom{\circ}\;$ we would need hundred of thousands to millions of evaluations to determine them.
Multivariate Partial Fractions
GDL, Maître ('19)
GDL, Page ('22)
$\circ$ We want to determine whether a partial fraction decomposition is possible
$$
\frac{\mathcal{N}}{\mathcal{D}_1\mathcal{D}_2} \stackrel{?}{=}
\frac{\mathcal{N}_2}{\mathcal{D}_1} + \frac{\mathcal{N}_1}{\mathcal{D}_2}
$$
$\phantom{\circ}$ without knowing $\mathcal{N}$ analytically. The complexity should not depend on $\mathcal{N}$ (besided numerical evaluations).
$\phantom{\circ}$ The complexity will depend on the irreducible polynomials $\mathcal{D}_1, \mathcal{D}_2$.
$\circ$ Multivariate partial fraction decompositions follow from varieties where pairs of denominator factors vanish
$$
\frac{\mathcal{N}}{\mathcal{D}_1\mathcal{D}_2} \stackrel{?}{=}
\frac{\mathcal{N}_2}{\mathcal{D}_1} + \frac{\mathcal{N}_1}{\mathcal{D}_2} \; \Longleftrightarrow \; \mathcal{N} \stackrel{?}{\in} \big\langle \mathcal{D}_1, \mathcal{D}_2 \big\rangle \, \text{ i.e. } \; \mathcal{N} \stackrel{?}{=} \mathcal{N}_1 \mathcal{D}_1 + \mathcal{N}_2 \mathcal{D}_2
$$
$$
\langle {\color{orange}xy^2 + y^3 - z^2} \rangle + \langle {\color{blue}x^3 + y^3 - z^2} \rangle = \langle xy^2 + y^3 - z^2, x^3 + y^3 - z^2 \rangle = \langle {\color{red}2y^3-z^2, x-y} \rangle \cap \langle {\color{green}y^3-z^2, x} \rangle \cap \langle {\color{blue}z^2, x+y} \rangle
$$
$\phantom{\circ}$ This is a primary decomposition, it is the equivalent for polynomials of say: $12 = 2^2 \times 3$
$\phantom{\circ}$ If $\mathcal{N}$ vanishes on all branches, than the partial fraction decomposition exists.
Iterated Pole Subtraction
GDL, Maître ('19)
GDL, Page ('22)
Chawdhry ('23)
Xia, Yang ('25)
$\circ\;$ After we determine valid partial fraction decompositions, determine a numerator at a time, e.g.
$$
c_i = \frac{\mathcal{N}_2}{\mathcal{D}_1} + \frac{\mathcal{N}_1}{\mathcal{D}_2}
$$
$\phantom{\circ}\;$ Isolate $\mathcal{N}_2$ by taking points in the limit $\mathcal{D}_1 \rightarrow 0$.
$\circ\;$ To do this, we need to nest $p$-adic limits:
$\phantom{\circ}\;\quad\star$ set $x \propto p^5$, get 5 digits for the leading NMRK behaviour
$\phantom{\circ}\;\quad\star$ set $\mathcal{D}_1 \propto p$, as long as its pole degree is less than 5, get a value for the residue.
$\circ\;$ Example of explicit construction with
syngular (on GitHub), a Python extension to
Singular
> from syngular import Field, Ring, Ideal, RingPoint
> ring = Ring('0', ('z', 'zb', 'w', 'wb', 'X'), 'dp')
> I = Ideal(ring, ['(-4*(-1+w)*w*(-1+wb)*wb*X**2*(-1+z)*z*(-1+zb)*zb+(X*z*(wb+zb-wb*zb+X*zb)+w*(wb-X*(-1+z)*zb+wb*X*(1-zb+z*(-1+2*zb))))**2)', ])
> I.squash() # just expand the polynomial in this case
> point = RingPoint(ring, field=Field("padic", 2 ** 31 - 1, 9)) # a dictionary {'z': number, ...}
> point.singular_variety(I, valuations=(1, ), seed=0) # push the point on the surface
> point(I.generators[0])
< 26429729*2147483647 + ... + O(2147483647^9)