Large Logarithms from Big Rapidity Gaps  
     $\circ\,$ In the forward limit $s \gg |t|$, i.e. at large CoM energy vs. momentum transfer, 
     $\phantom{\circ}\,$ when final state emissions develop  large rapidity gaps
     $\phantom{\circ}\,$ amplitudes are dominated by unphysically  large logarithms 
$$
\mathcal{A} \approx \mathcal{O}\big(\alpha_s^n \log^n(s/|t|)\big )
$$
     $\circ\,$ The BFKL kernel captures the exponentiation of these large logarithms, 
     $\phantom{\circ}\,$ allowing us to resum their contribution to the cross section.
 Fadin, Kuraev, Lipatov `75;$\;$ Balitsky, Lipatov `78
     $\circ\,$ In this kinematic limit, known as Multi-Regge Kinematics (MRK), an effective particle is 
     $\phantom{\circ}\,$ exchanged in the t-channel, a Reggeon, from which more rapidity-gapped radiation can be emitted. 
     $\phantom{\circ}\,$ Depending on whether the extra radiation is itself rapidity gapped we talk about next-to-MRK.
    
    
    
    
    
    
    
      
 Amplitude Factorization in MRK and NMRK 
     $\circ\;$ In the (N)MRK we can picture the amplitude as follows
 Images adapted from  Byrne `23
     $\phantom{\circ}\;$ where: the ziggly line is the Regge trajectory $\mathcal{R}$, the green blobs are impact factors $\mathcal{C}$, the blue 
     $\phantom{\circ}\;$ blob is a one-emission central vertex $\mathcal{V}_g$, and the gray blob is a two-emission central vertex $\mathcal{V}_{gg}$.
     $\circ\;$ Amplitudes factorise (very schematically, octet component only and up to Regge cuts)
$$
\mathcal{A}_4 \approx \mathcal{C}  \, \mathcal{R} \, \mathcal{C} \, , \qquad
\mathcal{A}_5 \approx \mathcal{C}  \, \mathcal{R} \, \mathcal{V}_g \, \mathcal{R} \, \mathcal{C} \, , \qquad
\mathcal{A}_6 \approx \mathcal{C}  \, \mathcal{R} \, \mathcal{V}_{gg} \, \mathcal{R} \, \mathcal{C}
$$
     $\phantom{\circ}\;$ where each component admits an expansion in powers of $\alpha_s$, thus e.g. $\mathcal{A}_4^{(1)}$ gives us $\mathcal{C}^{(1)}$ and $\mathcal{R}^{(1)}$
    
    
    
    
    
      
    
    
    
    
    
    
      
 Leading Order Kernel Components 
Leading-Log (LL) Resummation: $\mathcal{O}\big(\alpha_s^n \log^n(s/|t|)\big )$
     $\circ\,$ The two components of the leading order (LO) BFKL kernel, 
     $\phantom{\circ}\,$ required for resummation of leading logarithms (LL), are
Images from Byrne, Del Duca, Dixon, Gardi, Smillie `22
     $\phantom{\circ}\,$ where pictured is a forward squared amplitude with a final-state cut.
     $\phantom{\circ}\,$ (a) is a correction to the Regge trajectory $\mathcal{R}^{(1)}$
     $\phantom{\circ}\,$ (b) is the leading order central emission vertex (CEV) $\mathcal{V}_g^{(0)}$ in MRK
    
    
    
    
    
    
    
      
 NLO Kernel 
Next-To-Leading-Log (NLL) Resummation: $\mathcal{O}\big(\alpha_s^n \log^{n-1}(s/|t|)\big )$
     $\phantom{\circ}\,$ (a) two-loop correction to the Regge trajectory, $\mathcal{R}^{(2)}$
     $\phantom{\circ}\,$ (b) one-loop correction to the one-emission CEV $\mathcal{V}_g^{(1)}$ in MRK
     $\phantom{\circ}\,$ (c) leading two-emission CEV $\mathcal{V}_{gg}^{(0)}$, this requires an next-to-MRK (NMRK) tree computation: 
     $\phantom{\circ}\,\kern4mm$ the two central gluons are not rapidity gapped
    
    
    
    
    
    
    
      
 NNLO Kernel 
NNLL Resummation: $\mathcal{O}\big(\alpha_s^n \log^{n-2}(s/|t|)\big )$
     $\phantom{\circ}\,$ (a) Three loop $2\to 2$ MRK, from three Reggeons to three-loop correction to the trajectory, $\mathcal{R}^{(3)}$
  Falcioni, Gardi, Maher, Milloy, Vernazza `21;$\;$ Caola, Chakraborty, Gambuti, von Manteuffel, Tancredi `21
     $\phantom{\circ}\,$ (b) Two-loop correction to the central emission vertex $\mathcal{V}_g^{(2)}$ for one gluon
  Abreu, GDL, Falcioni, Gardi, Milloy, Vernazza `24;$\;$ Buccioni, Caola, Devoto, Gambuti `24
     $\phantom{\circ\,\text{(b)}}$ by expanding in the MRK limit the recently available two-loop five-parton amplitudes
  GDL, Ita, Klinkert, Sotnikov `23;$\;$ GDL, Ita, Sotnikov `23;$\;$ Agarwal, Buccioni, Devoto, Gambuti, von Manteuffel, Tancredi `23
     $\phantom{\circ}\,$ (c) The CEV for one emission $\mathcal{V}_{gg}^{(0)}$ (at higher orders in epsilon)
  Fadin, Fucilla, Papa `23
     $\phantom{\circ}\,$ (d) The last missing component is the next-to-maximally-helicity-violiating (NMHV) one-loop 
     $\phantom{\circ\,\text{(d)}}$ two-gluon CEV $\mathcal{V}_{g^{+}g^{-}}^{(0)}$,
     this requires expanding in NMRK the one-loop six-gluon amplitude
 Byrne, GDL, Del Duca, Gardi, Smillie - in progress; GDL, Maitre `19
     $\phantom{\circ}\,$ (e) The leading CEV for three emissions $\mathcal{V}_{ggg}^{(0)}$ from an NNMRK limit at tree level
  Byrne, Del Duca, Gardi, Mo, Smillie `25
    
    
    
    
    
      
    
    
    
    
    
    
      
 Minimal Variables for (N)MRK  
$\circ$ The problem is most easily formulated in terms of lightcone momenta
$$
\begin{array}{rllll}
p \; = & (p^+, & p^-, & p_\perp , & \bar p_\perp ) \\
  = & (E + p_z, & E - p_z, & p_x + i p_y, & p_x - i p_y)
\end{array}
$$
$\circ$ We can picture the MRK limit as follows
     
     
     
     
     $$
     p_{i}^{\;j} = \left(
     \begin{array}{cccc}
     0 & \text{mc} & 0 & 0 \\
     \text{mc} & 0 & 0 & 0 \\
     p_4^{+} X_{34} & \text{mc} & \text{mc} & \text{mc} \\
     p_4^{+}  & \text{mc} & \frac{-q_1}{z − 1} & \frac{-\bar q_1}{\bar z − 1} \\
     p_4^{+} / X_{45} & \text{mc} & \frac{q_1 z}{z − 1} & \frac{\bar q_1\bar z }{\bar z − 1} 
     \end{array}\right) \\[3mm]
     \text{mc = fixed by momentum conservation}
     $$
     
 
$\circ\,$ The MRK limit is a two-variable problem $z, \bar z$; 
$\phantom{\circ}\,$ $q_1, \bar q_1, p_4^+$ drop out by normalizing by the tree and $X_{34} \sim X_{45} \sim 1/x \gg 1$
$\circ$ The NMRK limit is a five-variable problem $z, \bar z, w, \bar w, X=X_{(45)}$, other variables drop out
    
    
    
    
    
    
    
      
 Challenge from Spurious Cancellations 
     $\circ\,$ Amplitudes take the form:
$$
\textstyle \mathcal{A}^{(\ell)}_n = \sum_i c_i \, I_i
$$
     $\phantom{\circ}\,$ with $c_i$ rational functions, $I_i$ transcendental master integrals
     $\circ\,$ For $\mathcal{A}^{(2)}_5$ in the MRK limit we have:
$$
c_i \approx \frac{c_{i,-1}}{x} + c_{i,0} + \mathcal{O}(x)\; ,  \quad I_i \approx I_{i,0} + x I_{i,1} + \mathcal{O}(x)
$$
     $\phantom{\circ}\,$ one spurious order in  $x\rightarrow 0$ cancels between rational and transcendental.
     $\circ\,$ For $\mathcal{A}^{(1)}_6$ in the NMRK limit we have (for the NMHV amplitude):
$$
\require{\cancel}
c_i \approx \frac{\cancelto{0}{c_{i,-8}}}{x^{-8}} + \dots +  \frac{\cancelto{0}{c_{i,-1}}}{x} + c_{i,0} + \mathcal{O}(x)\; ,  \quad I_i \approx I_{i,0}+ \mathcal{O}(x)
$$
     $\phantom{\circ}\,$ Problem: 8 orders of spurious cancellations in the (N)MRK parameter as $x\rightarrow 0$
    
    
    
    
    
    
    
      
 Challenge from Spurious Cancellations (2) 
     $\circ\,$ The $\mathcal{A}^{(2)}_5$ coefficients are simple
> from antares_results.jjj.ggggg.mhv import lTerms; lTerms
< [Terms("""+(1⟨4|5⟩²)/(⟨1|2⟩⟨1|3⟩⟨2|3⟩)"""), Terms("""+(1⟨4|5⟩³)/(⟨1|2⟩²⟨3|4⟩⟨3|5⟩)"""), ...]
> len(str(lTerms[0])), max(map(len, map(str, lTerms)))
< 28, 630
     $\circ\,$ The $\mathcal{A}^{(1)}_6$ NMHV coefficients are much more complex
> from antares_results.jjjj.gggggg.pmpmpm import coeffs; coeffs['box(1)']
< Terms("""+(-1/2j⟨1|2⟩⁴[1|2][2|3]⟨3|1+2|5]⁴)/(⟨1|3⟩⁴[4|5][5|6]⟨1|2+3|4]⟨3|1+2|6]s_123)""")
> len(str(coeffs['box(1)'])), max(map(len, map(str, coeffs.values())))
< 76, 346853
     $\phantom{\circ}\,$ Some coefficients (three mass triangles, bubbles, rational part) are very complicated!
     ${\color{red} ✗}$ Analytic expansion is a no go. Run out of memory and time after 3 or 4 orders! 
     ${\color{red} ✗}$ Numerical expansion with floating-point numbers is also too complicated. 
     $\phantom{{\color{red} ✗}}$ Say we input $x\approx 10^{-10}$ to have 10 digits to work with, we would lose (at least) 80 digits!
    
    
    
    
    
    
    
      
 $p\kern0.2mm$-adic numbers 
     $\circ$ You may be familiar with finite field (integers modulo a prime)
  von Manteuffel, Schabinger `14;$\;$ Peraro `16
$$ 
\displaystyle a \in \mathbb{F}_p : a \in \{0, \dots, p -1\} \; \text{ with } \; \{+, -, \times, \div\}
$$
     $\phantom{\circ}$ Limits (and calculus) are not well defined in $\mathbb{F}_p$. We can make things zero, but not small:
$$ 
\displaystyle |a|_0 = 0 \; \text{if} \; a = 0 \; \text{else} \; 1 \quad \text{a.k.a. the trivial absolute value.}
$$
     $\circ$ There exists just one more absolute value on the rationals, the $p$-adic absolute value.
   Ostrowski's theorem 1916
     $\circ$ Let's start from $p$-adic integers, instead of working modulo $p$, expand in powers of $p$
$$ 
\displaystyle a \in \mathbb{Z}_p : a_0 p^0 + a_1 p^1 + a_2 p^2 + \dots + \mathcal{O}(p^n)
$$
     $\phantom{\circ}$ In some sense we are correcting the finite field result with more (subleading) information.
     $\circ$ $p$-adic numbers $\mathbb{Q}_p$ allow for negative powers of $p$, (would be division by zero in $\mathbb{F}_p$!)
$$ 
\displaystyle a \in \mathbb{Q}_p : a_{-\nu} p^{-\nu} + \dots + a_0 + a_1 p^1 + \dots + \mathcal{O}(p^n)
$$
   GDL, Page `22
     $\circ$ The $p$-adic absolute value is defined as $|a|_p = p^\nu$.
     $\phantom{\circ}$ Think of $p$ as a small quantity, $\epsilon$, even if it is a large prime (by the real absolute value, $|\,|_\infty$).
    
    
    
    
    
    
    
      
 The $p\kern0.2mm$-adic (N)MRK Limit 
     $\circ$ The space of $p$-adic numbers is an ultrametric space, the triangle inequality is strengthened to:
$$ 
\displaystyle d(x,z)\leq \max \left\{d(x,y),d(y,z)\right\} 
$$
     $\phantom{\circ}$ This leads to better stability properties: adding two numbers can never result is a larger number!
     $\circ$ A general kinematic evaluation at a $(2^{31}-1)$-adic phase space point
> from lips import Particles; from syngular import Field
> oPs = Particles(6, field=Field("padic", 2 ** 31 - 1, 9), seed=0)  # create psp
> (1j * coeffs['bubble(1)'])(oPs)  # evaluate the coefficient(s)
< 490010355 + 1085079429*2147483647 + 1676653899*2147483647^2 + 726358851*2147483647^3 + 1074867770*2147483647^4 + 133781189*2147483647^5 + 892424664*2147483647^6 + 1457115085*2147483647^7 + 2127645140*2147483647^8 + O(2147483647^9)
     $\circ$ Manipulate phase space: set the (N)MRK parameter controlling the rapidity gap to be $x\approx p$
$$ 
\displaystyle 0 \leq \text{leading NMRK behavior} \leq p-1 + \mathcal{O}(2147483647^1)
$$
     ${\color{greeN} ✓}$ We still lose 1 digit per spurious pole (8 in total), but the result is now exact.
    
    
    
    
    
      
    
    
    
    
    
    
      
 Fundamentals of Analytic Reconstruction 
     $\circ\;$ Analytic reconstruction is a powerful alternative to symbolic manipulations: 
     $\phantom{\circ}\;\star\;$ cancellations happen numerically, avoiding intermediate bottlenecks 
     $\phantom{\circ}\;\star\;$ the cost is largely driven by the complexity of the final results
     $\circ\;$ We have a ring in 5 independent variables over a field $\mathbb{F}(=\mathbb{Q}_p)$
$$ 
\displaystyle \kern10mm R_{NRMK} = \mathbb{F}\big[ z, \bar z, w, \bar w, X(=X_{45}) \big]
$$
     $\phantom{\circ}\;$ we need to recover rational functions from numerical samples:
$$ 
\displaystyle \{z, \bar z, w, \bar w, X\} \in \mathbb{F}^5 \rightarrow \text{BlackBox} \rightarrow c_i \in \mathbb{F} \rightarrow c_i = \frac{\mathcal{N}(z, \bar z, w, \bar w, X)}{\mathcal{D}(z, \bar z, w, \bar w, X)}
$$
     $\phantom{\circ}\;$ The real power of the approach is with polynomial quotient rings.
     $\circ\;$ The complexity is not driven just by the number of variables, but also by the sigularities
$$ 
\displaystyle \mathcal{D}_{\Delta_{3m}} = -4(-1+w)w(-1+\bar w)\bar w X^2 (-1+z) z (-1+\bar z) \bar z+ \\ (X z (\bar w+\bar z-\bar w \bar z+X\bar z)+w(\bar w-X (-1+z) \bar z+\bar w X(1-\bar z+z(-1+2\bar z))))^2
$$
     $\phantom{\circ}\;$ alone has degreee 10. It appears up to cubic pole, making denominators exceed degree 30. 
     $\phantom{\circ}\;$ By comparison the most complicated singularity for $\mathcal{A}^{(2)}_5$ was $(z - \bar{z})$
    
    
    
    
    
    
    
      
      Least Common Denominator 
     
     (i.e. geometry at codimension one)
     
 
     
          
          
                $\circ\,$ We can determine the least common denominators (LCDs),
          
          
               $$
               \displaystyle \mathcal{D} = \prod_j \mathcal{D}_j^{q_{ij}}(z, \bar z, w, \bar w, X) \, .
               $$
          
          
               $\phantom{\circ}\,$ from a univariate slice $\vec\lambda(t)$ and guesses for the possible $\mathcal{D}_j$.
          
          
               $\circ$ The curve $\vec\lambda(t)$ must intersect all varieties $V(\langle \mathcal{D}_j \rangle)$, e.g.
          
          
               $$
               \displaystyle z \rightarrow z + c_z t, \; \bar z \rightarrow \bar z + c_{\bar z} t, \\ 
               \; w \rightarrow w + c_{\bar w} t, \; \bar w \rightarrow \bar w + c_{\bar w} t, \; X \rightarrow X + c_X t
               $$
          
          
               $\phantom{\circ}\,$ Thiele interpolation yields $\mathcal{D}(t)$, do univariate factorization 
 $\phantom{\circ}\,$ and match to factors from multivariate guesses.
          
          
           
               $\phantom{\circ}\,$ Ring.univariate_slice and num_func.get_lcd
          
      
     
          
          
               Space has dimension $5$,
          
          
               $\mathcal{D}_j = 0$ have dimension $4$,
          
          
               $\vec\lambda(t)$'s have dimension 1.
          
      
 
    Poles & Zeros $\;\Leftrightarrow\;$ Irreducible Varieties $\;\Leftrightarrow\;$ Prime Ideals 
     Physics $\kern19mm$ Geometry $\kern19mm$ Algebra