Partial Amplitudes & Finite Remainders
$\circ$ Amplitude (integrands) can be written as (for a suitable choice of master integrals)
$$
\displaystyle A(\lambda, \tilde\lambda, \ell) =
\sum_{\substack{\Gamma,\\ i \in M_\Gamma \cup S_\Gamma}} \, c_{\,\Gamma,i}(\lambda, \tilde\lambda, \epsilon) \, \frac{m_{\Gamma,i}(\lambda\tilde\lambda, \ell)}{\textstyle \prod_{j} \rho_{\,\Gamma,j}(\lambda\tilde\lambda, \ell)} \;\; \xrightarrow[]{\int d^D\ell} \;\; \sum_{\substack{\Gamma,\\ i \in M_\Gamma}} \frac{ \sum_{k=0}^{\text{finite}} \, {\color{red}c^{(k)}_{\,\Gamma, i}}(\lambda, \tilde\lambda) \, \epsilon^k}{\prod_j (\epsilon - a_{ij})} \, {\color{orange}I_{\Gamma, i}}(\lambda\tilde\lambda, \epsilon)
$$
$\circ$ $\Gamma$: topologies $\quad\circ$ $M_\Gamma$: master integrands $\quad\circ$ $S_\Gamma$: surface terms
$\circ$ All physical information is contained in the finite remainders, at two loops
Weinzierl ('11)
$$
\underbrace{\mathcal{R}^{(2)}}_{\text{finite remainder}} = \mathcal{A}^{(2)}_R \underbrace{- \quad I^{(1)}\mathcal{A}^{(1)}_R \quad - \quad I^{(2)}\mathcal{A}^{(0)}_R}_{\text{divergent + convention-dependent finite part}} + \mathcal{O}(\epsilon)
$$
Catani ('98)
Becher, Neubert ('09)
Gardi, Magnea ('09)
$\phantom{\circ}$ $\mathcal{A}^{(1)}_R$ to order $\epsilon^2$ is still needed to build $\mathcal{R}^{(2)}$, but there is no real physical reason to reconstruct it.
$$
\textstyle \mathcal{R}(\lambda, \tilde\lambda) = \sum_i \color{red}{r_{i}(\lambda,\tilde\lambda)} \, \color{orange}{h_i(\lambda\tilde\lambda)}
$$
$\circ$ Goal: reconstruct $\color{red}{r_{i}(\lambda,\tilde\lambda)}$ from numerical samples in a field $\mathbb{F}$
$\mathbb{F}_p$: von Manteuffel, Schabinger ('14);
$\phantom{\mathbb{F}_p}$ Peraro ('16)
$\mathbb{C}$: GDL, Maitre ('19);
$\mathbb{Q}_p$: GDL, Page ('22)
Setting up the Calculation
$\circ$ Original computation
[1] was performed with
Caravel
$$
\require{color}
\displaystyle \sum_{\text{states}} \, \prod_{\text{trees}} A^{\text{tree}}(\lambda, \tilde\lambda, \ell)\big|_{\text{cut}_{\Gamma}} = \sum_{\substack{\Gamma' \ge \Gamma, \\ i \in M_\Gamma' \cup S_\Gamma'}} \kern-2mm {\color{black}{c_{\,\Gamma',i}(\lambda, \tilde\lambda)}} \, \frac{m_{\Gamma',i}(\lambda\tilde\lambda, \ell)}{\displaystyle \prod_{j\in P_{\Gamma'} / P_{\Gamma}} \rho_{j}(\lambda\tilde\lambda, \ell)}\Bigg|_{\text{cut}_\Gamma}
$$
$\rightarrow$ Numerical Berends-Giele recursion for LHS, solve for coeffs. in RHS.
$\rightarrow$ IBP reduction = decomposition on RHS, $\; m_{\Gamma,i} \in M_\Gamma \cup S_\Gamma$
$\circ$ This computation started from the ancillaries files of
[1] Abreu, Febres Cordero, Ita, Klinkert, Page, Sotnikov
1. Wrote a Python script to split the 1.4 GB ancillaries into >10k files
2. Compile into 18.2 GB of C++ binaries (for reference Caravel compiles into approx. 5 GB)
3. Obtain $\mathbb{F}_p$ evaluations of the form factors (each takes approx. 1 sec per point)
4. Recombine triplets of form factors into six-point helicity amplitudes (incl. decays)
$\rightarrow$ Assemble 5 helicity amplitudes into 3 categories: $\mathcal{R}_{\bar qQ\bar QqV}^{\text{NMHV}} ,\, \mathcal{R}_{\bar qggqV}^{\text{MHV}} ,\, \mathcal{R}_{\bar qggqV}^{\text{NMHV}}$
$\circ$ $ttH$ computed analytically (Form optimized) with unitarity, standard Feynman diagrams techniques,
$\phantom{\circ}$ and cross checked with Open-Loops
Buccioni, Lang, Lindert, Maierhöfer, Pozzorini, Zhang, Zoller
Guiding Principles
$\circ$ Amplitude should be gauge and Lorentz invariant, and spin and little-group covariant
${\color{red} ✗}$ gauge dependence, e.g. through reference vectors
${\color{red} ✗}$ tensor decompositions $\epsilon_\mu T^\mu$, polarizations are needed for simplifications
${\color{greeN} ✓}$ $\epsilon_\mu \rightarrow \epsilon_{\alpha\dot\alpha}$, $P^\mu \rightarrow \lambda_\alpha \tilde\lambda_{\dot\alpha}$; all $\alpha, \dot\alpha$ indices contracted; all $\lambda, \tilde\lambda$ random (subject to mom cons)
$\circ$ The singularity structure should be manifest in $\mathbb{C}$ (exprs will then be better behaved in $\mathbb{R}$ too)
${\color{red} ✗}$ Rational reparametrisations of the kinematics change the denominator structure
${\color{red} ✗}$ Forcing unphysical splits misses cancellations (e.g. even nor odd separation)
${\color{greeN} ✓}$ Chiral cancellations are required to obtain the true Least Common Denominator
${\color{greeN} ✓}$ Work off the real slice: $P^\mu \in \mathbb{C}^4$, $\lambda_\alpha \neq \tilde\lambda_{\dot\alpha}^\dagger$. In practice, $P^{\mu=y}\in i\mathbb{Q}\Rightarrow \lambda_{\alpha} \in \mathbb{F}_p \text{ or } \mathbb{Q}_p$
$\circ$ Focus only on final physical expressions
${\color{red} ✗}$ Unphysical intermediate steps may be unnecessarily complicated
${\color{red} ✗}$ Analytic manipulations at this complexity are unfeasible, even on "physical" results
${\color{greeN} ✓}$ Bypass all intermediate steps with numerical evaluations (cancellations happen numerically)
Trade-offs and Challenges
$\circ$ We must work with variables subject to constrains; the language is that of algebraic geometry.
$\phantom{\circ}$ The covariant rings are
$$
\displaystyle \kern10mm R_{Vjj} = \mathbb{F}\big[|1⟩_{\alpha}, [1|_{\dot\alpha}, |2⟩_{\alpha}, [2|_{\dot\alpha}, |3⟩_{\alpha}, [3|_{\dot\alpha}, |4⟩_{\alpha}, [4|_{\dot\alpha}, [5|_{\dot\alpha}, |6⟩_{\alpha} \big] \Big/ \big\langle {\textstyle \sum_{i=1}^4} [5|i]\langle i |6\rangle \big\rangle
$$
$\phantom{\circ}$ where we took the the $V$ current to be $[5|\gamma^\mu|6\rangle$ and removed $(5+6)_{\alpha\dot\alpha}$ by mom. cons.; and
$$
\displaystyle \kern10mm R_{ttH} = \frac{\mathbb{F}\big[|1⟩_{\alpha}, [1|_{\dot\alpha}, |2⟩_{\alpha}, [2|_{\dot\alpha}, |\boldsymbol{3}^I⟩_{\alpha}, [\boldsymbol{3}^I|_{\dot\alpha}, |\boldsymbol{4}_J⟩_{\alpha}, [\boldsymbol{4}_J|_{\dot\alpha}, \boldsymbol{5}_{\alpha\dot\alpha} \big]}{\big\langle \sum_{i,I,J} |i\rangle[i|, \langle \boldsymbol{3}|\boldsymbol{3}⟩ +[\boldsymbol{3}|\boldsymbol{3}], \langle \boldsymbol{3}|\boldsymbol{3}⟩-\langle \boldsymbol{4}|\boldsymbol{4}⟩, \langle \boldsymbol{4}|\boldsymbol{4}⟩ +[\boldsymbol{4}|\boldsymbol{4}]\big\rangle}
$$
$\phantom{\circ}$ where $\langle \boldsymbol{3}^I|\boldsymbol{3}^J⟩=m\epsilon^{JI} \text{ and } [\boldsymbol{3}^I|\boldsymbol{3}^J]=\bar{m}\epsilon^{IJ}$; we are setting $m=\bar{m}$ and the tops on-shell.
$\phantom{\circ}$ Note: we need only reconstruct a single choice, say $I=J=1$, the other follow by covariance.
$\circ$ Helicity amplitudes are Lorentz invariant; minimal ansätze are build in the invariant sub-rings
$$
\displaystyle \mathcal{R}_{Vjj} = \frac{\mathbb{F}\big[ \langle ij\rangle : \, 1\leq i< j\leq 6, i,j \neq 5, \; [ij] : 1\leq i< j\leq 5 \big]}{\big\langle {\textstyle \sum_{i=1}^4} [5|i]\langle i |6\rangle, 34 \text{ Schouten identities} \big\rangle}
$$
$$
\displaystyle \mathcal{R}_{ttH} = \mathbb{F}\big[ \underbrace{\langle 12\rangle, \langle \boldsymbol{3}1\rangle ... ⟨2|\boldsymbol{3}|2] ... ⟨2|\boldsymbol{3}|\boldsymbol{4}|2⟩}_{37\; \text{invariants}}
\big]\Big/ \big\langle \underbrace{⟨2|\boldsymbol{3}|2]⟨2|\boldsymbol{4}|1]-⟨2|\boldsymbol{3}|1]⟨2|\boldsymbol{4}|2]-[1|2]⟨2|\boldsymbol{3}|\boldsymbol{4}|2⟩, ...}_{\text{more than} \; 90 \; \text{generators}} \big\rangle
$$
Least Common Denominator
(i.e. geometry at codimension one)
$\circ\,$ The rational functions $r_i$ belong to the field of fractions of $R_X$,
$$
\displaystyle r_i(|i\rangle,[i|) = \frac{\mathcal{N}(|i\rangle,[i|)}{\prod_j \mathcal{D}_j^{q_{ij}}(|i\rangle,[i|)} % \, , \quad r_i(|i\rangle,[i|) \in \text{Frac}(R_n)
$$
$\phantom{\circ}\,$ we obtain $q_{ij}$ from a univariate slice $\vec\lambda(t)$, which we can build
$\phantom{\circ}\,$ in any q-ring with Syngular: Ring.univariate_slice
.
$\circ\,$ The $\mathcal{D}_j$ are (mostly) related to the letters of the symbol alphabet
Abreu, Dormans, Febres Cordero, Ita, Page ('18)
$
\displaystyle \mathcal{D}_{Vjj} \subset \kern-3mm \bigcup_{\sigma \; \in \; \text{Aut}(R_6)} \sigma \circ \big\{ \langle 12 \rangle, \langle 1|2+3|1], \langle 1|2+3|4], s_{123}, \\[-2mm] \kern30mm \Delta_{12|34|56}, ⟨3|2|5+6|4|3]-⟨2|1|5+6|4|2] \big\}
$
$
\displaystyle \mathcal{D}_{ttH} = \big\{ \langle 12 \rangle, [12], s_{123}, \dots, (s_{123}-m^2), \langle 1|\boldsymbol{3}|1], \dots, \\[2mm] \kern10mm \langle 1|\boldsymbol{3}|\boldsymbol{4}| 2 \rangle, \dots, \langle 1|\boldsymbol{3}|1+2|\boldsymbol{4}| 2], \dots, \Delta_{12|34|5}, \dots \Delta_{12|3|4|5} \big\}
$
Space has dimension $4n-4$,
$\mathcal{D}_j = 0$ have dimension $4n-5$,
$\vec\lambda(t)$'s have dimension 1.
Poles & Zeros $\;\Leftrightarrow\;$ Irreducible Varieties $\;\Leftrightarrow\;$ Prime Ideals
Physics $\kern18mm$ Geometry $\kern18mm$ Algebra
Basis Change from Laurent Coefficients
$\circ\,$ Change basis from a subset of the pentagon coefficients $r_{i \in \mathcal{B}}$ to $\mathbb{Q}$-linear combinations $\tilde r$,
$$
R = r_j h_j = r_{i\in \mathcal{B}} M_{ij} h_j = \tilde{r}_{i} \, O_{ii'}M_{i'j} \, h_j \, , \qquad O_{ii'}, M_{i'j}\in \mathbb{Q}
$$
[
6] Abreu, Febres Cordero, Ita, Klinkert, Page, Sotnikov '21
$\circ\,$ By Gaussian elimination, partition the space:
$$
\text{span}(r_{i \in \mathcal{B}}) = \underbrace{\text{column}(\text{Res}(r_{i \in \mathcal{B}}, \mathcal{D}_k^m))}_{\text{functions with the singularity}} \;\;\; \oplus \, \underbrace{\text{null}(\text{Res}(r_{i \in \mathcal{B}}, \mathcal{D}_k^m))}_{\text{functions without the singularity}}
$$
$\circ\,$ Search for linear combinations that remove as many singularities as possible
$$
\kern12mm \displaystyle O_{i'i} = \bigcap_{k, m} \, \text{nulls}(\text{Res}(r_{i \in \mathcal{B}}, \mathcal{D}_k^m))
$$
Reconstruction from Conjectured Properties
(for planar five-point one-mass amplitudes - all properties checked a posteriori)
$\circ\,$ Denominator pairs $\{\mathcal{D}_i, \mathcal{D}_j\}$ can be cleanly separated:
$$
\frac{\mathcal{N}}{\mathcal{D}_i^{q_i}\mathcal{D}_j^{q_j}\mathcal{D}_{\text{rest}}} \rightarrow \frac{\mathcal{N}_i}{\mathcal{D}_i^{q_i}\mathcal{D}_{\text{rest}}} + \frac{\mathcal{N}_j}{\mathcal{D}_j^{q_j}\mathcal{D}_{\text{rest}}}
$$
$\phantom{\circ}\,$ Examples of $\{\mathcal{D}_i, \mathcal{D}_j\}$ are:
$\qquad\star\,$ Any pairs of $s_{ijk}$ or $\Delta_{ij|kl|mn}$ or $\langle i|j|p_V|k|i]-\langle j|l|p_V|k|j]$
$\qquad\star\,$ Any conjugate pair $\{\langle i|j+k|l], \langle l|j+k|i]\}$ or cyclic $\{\langle i|j\rangle, [i|j]\}$
$\qquad\star\,$ Pairs of the form $\{\Delta_{ij|kl|mn}, \langle c|a+b|d] \text{ or } \langle ab \rangle \text{ or } [ab] \}$ unless $\{ab\}$ are $\{ij\}$ or $\{kl\}$ or $\{mn\}$
$\circ\,$ Other denominator pairs $\{\mathcal{D}_i, \mathcal{D}_j\}$ can be separated to order $\kappa$
$$
\frac{\mathcal{N}}{\mathcal{D}_i^{q_i}\mathcal{D}_j^{q_j}\mathcal{D}_{\text{rest}}} \rightarrow \sum_{\kappa - q_j\leq m \leq q_i}\frac{\mathcal{N}_i}{\mathcal{D}_i^{m}\mathcal{D}_j^{\kappa - m}\mathcal{D}_{\text{rest}}}
$$
$\qquad\star\,$ E.g. $\Delta_{ij|kl|mn}^4, \langle i|k+l|j]^5$ are separable to order 5.
${\color{greeN} ✓}$ Reconstruction only required 50k $\mathbb{F}_p$ samples $\;{\color{greeN} ✓}$Already simpler than original ones ($\sim$20MB)
$\;{\color{red} ✗}$ Results are unstable and sub-optimal, e.g. numbers like this appeared
127187555379407704220939486282289348327703498501718808908391691454242601886997968263623652083189652150273
Iterated Pole Subtraction
(i.e. geometry at codimension greater than one)
GDL, Maître ('19)
GDL, Page ('22)
Chawdhry ('23)
$\circ$ Multivariate partial fraction decompositions follow from varieties where pairs of denominator factors vanish
$$
\frac{\mathcal{N}}{\mathcal{D}_1\mathcal{D}_2} \stackrel{?}{=}
\frac{\mathcal{N}_2}{\mathcal{D}_1} + \frac{\mathcal{N}_1}{\mathcal{D}_2} \; \Longleftrightarrow \; \mathcal{N} \stackrel{?}{\in} \big\langle \mathcal{D}_1, \mathcal{D}_2 \big\rangle \, \text{ i.e. } \; \mathcal{N} \stackrel{?}{=} \mathcal{N}_1 \mathcal{D}_1 + \mathcal{N}_2 \mathcal{D}_2
$$
$\langle xy^2 + y^3 - z^2 \rangle$
$\cap$
$\langle x^3 + y^3 - z^2 \rangle$
$=$
$\begin{gather}\langle 2y^3-z^2, x-y \rangle \cap \langle y^3-z^2, x \rangle \cap \langle z^2, x+y \rangle\end{gather}$
$\circ\,$ Retain control by iteratively fitting residues on varieties (using $p$-adic numbers $\mathbb{Q}_p$, get $\mathbb{F}_p$ vals for nums)
$$
\begin{alignedat}{2}
& r^{(139 \text{ of } 139)}_{\bar{u}^+g^+g^-d^-(V\rightarrow \ell^+ \ell^-)} = & \qquad\qquad & {\small \text{Variety (scheme?) to isolate term(s)}} \\[2mm]
& +\frac{7/4{\color{blue}(s_{24}-s_{13})}⟨6|1+4|5]s_{123}{\color{green}(s_{124}-s_{134})}}{⟨1|2+3|4]⟨2|1+4|3]^2 Δ_{14|23|56}} + ... & \qquad\qquad & \Big\langle ⟨2|1+4|3]^2, Δ_{14|23|56} \Big\rangle \\[1mm]
% & -\frac{49/64⟨3|1+4|2]⟨6|1+4|5]s_{123}(s_{123}-s_{234})(s_{124}-s_{134})}{⟨1|2+3|4]⟨2|1+4|3]Δ^2_{14|23|56}} + \dots & \qquad\qquad & \Big\langle Δ_{14|23|56} \Big\rangle
\end{alignedat}
$$
$\circ\,$ Partial fraction decomposition and numerator insertions from e.g.:
$$
\sqrt{\big\langle ⟨2|1+4|3], Δ_{14|23|56} \big\rangle} = \big\langle {\color{green}(s_{124}-s_{134})}, ⟨2|1+4|3] \big\rangle \, , \\[1mm]
\big\langle ⟨1|2+3|4], ⟨2|1+4|3] \big\rangle = \big\langle ⟨1|2+3|4], ⟨2|1+4|3], {\color{blue}(s_{13}-s_{24})}\big\rangle \cap \big\langle ⟨12⟩, [34] \big\rangle
$$
Core Tools - Fully Open Source
Install from github (git clone
) or PyPI (pip install
); use of Jupyter is recommended.
$\circ$
pyadic
$\quad\rightarrow$ Finite field $\mathbb{F}_p$ and $p$-adic $\mathbb{Q}_p$ number types, including field extensions
$\quad\rightarrow$ rational number reconstruction (Wang's EEA, LGRR, MQRR)
$\quad\rightarrow$ univariate and multivariante Newthon & univariate Thiele interpolation algorithms in $\mathbb{F}_p$
$\circ$
syngular (in the backhand
Singular is used for many operations)
$\quad\rightarrow$ object-oriented algebraic geometry (Field, Ring, Quotient Ring, Ideal)
$\quad\rightarrow$ ring-agnostic monomials and polynomials (with support for unicode characters, e.g. spinor brackets)
$\quad\rightarrow$ multivariate solver (Ideal.point_on_variety), under- and over-constrained systems OK
$\quad\rightarrow$ a semi-numerical prime and primary ideal test (assumes equi-dimensionality of ideal)
$\circ$
lips (Lorentz invariant phase space)
$\quad\rightarrow$ phase space points over any field ($\mathbb{Q}, \mathbb{Q}[i], \mathbb{R}, \mathbb{C}, \mathbb{Q}_p, \mathbb{F}_p$), including internal and external masses
$\quad\rightarrow$ evaluate any Mandelstam or spinor expression (custom ast/regex parser)
$\quad\rightarrow$ generation of any special kinematic configuration (wrapper around Ideal.point_on_variety)