arXiv:1904.04067 (JHEP) arXiv:1910.11355
with Daniel Maître
IPPP Internal Seminar
<img src="IP3_logo_blue.png”; style="max-width:280px;float:center;border:none;“> <img src="DurhamLogo.svg”; style="max-width:280px;float:center;border:none;“>
A. Reconstruction of analytical spinor-helicity amplitudes
1. Motivation 2. Singular limits 3. Partial fractions and ansatze
4. Rational coefficients in QCD
B. Tree amplitudes from the CHY formalism
1. Motivation 2. Scattering equations 3. CHY-Integrands 4. Amplitudes
Cross sections at hadron colliders
$d\hat{σ}_{n}=\frac{1}{2\hat{s}}dΠ_{n-2};(2π)^4δ^4\big(∑_{i=1}^n p_i\big);|\overline{\mathcal{A}(p_i,μ_F, μ_R)}|^2$ </font size>
</font size>
Powers of coupling in pure gluon scattering.</font size>
Chromo-dynamics and kinematics
Color ordering at tree level and one loop [1, 2, …]:
$\mathcal{A}^{tree}_{n}({p_i, λ_i, a_i}) = ; g^{n-2} ∑_{σ\in S_n/Z_n} \text{Tr}(T^{a_σ(1)}\dots T^{a_σ(n)}) A^{tree}_n(σ(1^{λ_1}),\dots ,σ(n^{λ_n}))$</font size>
$A^{tree},, d_i,, c_i,, b_i,$ and $R$ are rational functions of kinematic invariants only.
</font size>
Intermediate and final expressions
Brute force calculations are a mess:
<img src="Five_gluons_mess.png”; style="max-width:500px;float:center;border:none;margin-top:-5px;“>
Results are often much easier [6, 7]:
$A^{tree}(1^{+}_{g}2^{+}_{g}3^{+}_{g}4^{-}_{g}5^{-}_{g}) = \frac{i,⟨45⟩^{4}}{⟨12⟩⟨23⟩⟨34⟩⟨45⟩⟨51⟩}$
</font size>
Numerical and Analytical: pros and cons
Numerical calculations efficiently bypass algebraic complexity, see: BlackHat [8], CutTools [9], MadGraph [10], Rocket [11], Samurai [12], NGluon [13], OpenLoops [14]… </font size>
Lowest-laying representations of the Lorentz group
$\boldsymbol{(j_{-},j_{+})}$ | dim. | name | quantum field | kinematic variable |
---|---|---|---|---|
(0,0) | 1 | scalar | $h$ | m |
(0,1/2) | 2 | right-handed Weyl spinor | $\chi_{R,\alpha}$ | $\lambda_\alpha$ |
(1/2,0) | 2 | left-handed Weyl spinor | $\chi_L^{,\dot\alpha}$ | $\bar{\lambda}^{\dot\alpha}$ |
(1/2,1/2) | 4 | rank-two spinor/four vector | $A^\mu/A^{\dot\alpha\alpha}$ | $P^\mu/P^{\dot\alpha\alpha}$ |
(1/2,0)$\oplus$(0,1/2) | 4 | bispinor (Dirac spinor) | $\Psi$ | $u, v$ |
</font size>
Spinors
Weyl spinors are sufficient for massless particles:
$\text{det}(P^{\dot\alpha\alpha})=m^2 \rightarrow 0 \quad \Longrightarrow \quad P^{\dot\alpha\alpha} = \bar\lambda^{\dot\alpha}\lambda^\alpha$.</font size>
$$ \lambda_\alpha=\frac{1}{\sqrt{p^0+p^3}}\begin{pmatrix}p^0+p^3 \\ p^1+ip^2\end{pmatrix} , , ;;; \lambda^\alpha=\epsilon^{\alpha\beta} \lambda_\beta =\frac{1}{\sqrt{p^0+p^3}}\begin{pmatrix}p^1+ip^2 \\ -p^0+p^3\end{pmatrix} $$</font size>
$\bar\lambda_{\dot\alpha}=\frac{1}{\sqrt{p^0+p^3}}\begin{pmatrix}p^0+p^3 \\ p^1-ip^2\end{pmatrix} , , ;;; \bar\lambda^{\dot\alpha}=\epsilon^{\dot\alpha\dot\beta}\bar\lambda_{\dot\beta}=\frac{1}{\sqrt{p^0+p^3}}\begin{pmatrix}p^1-ip^2 \\ -p^0+p^3\end{pmatrix}$</font size>
$$ \bar\lambda_{\dot\alpha} = (\lambda_\alpha)^* \quad if \quad p^i \in \mathbb{R}; \quad \quad \bar\lambda_{\dot\alpha} \neq (\lambda_\alpha)^* \quad if \quad p^i \in \mathbb{C} $$</font size>
Spinor Helicity
$$ s_{ij} = ⟨ij⟩[ji] $$
$$ ⟨i;|;(j+k);|;l] = (λ_i)^α (\not P_j + \not P_k )_{α\dotα} \barλ_l^\dotα $$
$$ ⟨i;|;(j+k);|;(l+m);|;n⟩ = (λ_i)^α (\not P_j + \not P_k )_{α \dot α} (\bar{\not P_l} + \bar{\not P_m} )^{\dot α α} (λ_n)_α $$
$$ tr_5(ijkl) = tr(\gamma^5 \not P_i \not P_j \not P_k \not P_l) = [i,|,j,|,k,|,l,|,i⟩ - ⟨i,|,j,|,k,|,l,|,i] $$
</font size>
Why use complex momenta?
We want to be able to distinguish between different poles. For example, we want to tell apart:
$$ \frac{1}{⟨ij⟩} \quad and \quad \frac{1}{[ji]} $$
but with real momenta we would have:
$$ ⟨ij⟩ \sim [ji]^* \sim \sqrt{s_{ij}} $$
Singular limits $\Rightarrow$ poles of the amplitude
We need a set of Lorentz invariants:
$r_i \in \{ ⟨12⟩, ⟨13⟩, \dots, ⟨1|2+3|4], \dots, s_{123}, \dots \}$,</font size>
and let $, \mathbb{f} ,$ be the function we want to reconstruct.
We want to build phase space points where a single invariant vanishes:
$r_i \rightarrow ε \ll 1, \quad r_{j \neq i} \sim \mathcal{O}(1), \quad \mathbb{f} \rightarrow ε^α ; \Rightarrow ; log(\mathbb{f}) \rightarrow α\cdot log(ε)$</font size>
$\Rightarrow$ The slope of the log-log plot gives us the type of singularity, if it exists.
Tree-level example
$\mathbb{f} = A^{tree}(1^{+}_{g}2^{+}_{g}3^{+}_{g}4^{-}_{g}5^{-}_{g}6^{-}_{g})$
</font size>
Note: the invariant on the x-axis gets smaller from left to right.</font size>
The least common denominator
Studying all the limits yields the least common denominator for $\mathbb{f}$:
$\mathbb{f} = \frac{\mathcal{N_{LCD}}}{\mathcal{D_{LCD}}} = \frac{\mathcal{N_{LCD}}}{⟨12⟩⟨16⟩[16]⟨23⟩⟨34⟩[34][45][56]s_{234}s_{345}}$.
The complexity of the numerator depends on two parameters:
In this case $\mathcal{N_{LCD}}$ has mass dimension 10, and phase weights [-1, 0, -1, 1, 0, 1].
The ansatz has 1326 independent terms.
</font size>
Partial fractioning
Except for the easiest cases, we should really think about $\mathbb{f}$ as:
$\mathbb{f} = \sum_i \frac{\mathcal{N}_i}{\mathcal{D}_i} = \sum_i \frac{\mathcal{N}_i}{\mathcal{R}_i\mathcal{S}_i}$,
where $\mathcal{R}_i$ are products of subsets of $\mathcal{D_{LCD}}$ (i.e. real poles), and $\mathcal{S}_i$ are products of factors not in $\mathcal{D_{LCD}}$ (i.e. spurious poles).
Doubly singular limits
The required information can be accessed from doubly singular limits.
We now want phase space points where two invariants vanish:
$r_i \rightarrow ε \ll 1, \quad r_j \rightarrow ε \ll 1, \quad \mathbb{f} \rightarrow ε^α ; \Rightarrow ; log(\mathbb{f}) \rightarrow α\cdot log(ε)$
In general we cannot guarantee uniqueness anymore, even with complex momenta. $\exists ;r_{k \neq i, j} \sim \epsilon$.
Information from doubly singular limits
</font size>
The first number is the slope of the log-log plot in the limit, the second number is the degeneracy of the phase space in the limit.
Which poles share the same denominator?
The following is single line of the table in the previous slide:
</font size>
<img src="Graph.gv.svg”; style="max-width:720px;float:center;border:none;margin-bottom:-30px;“>
Diagramatic representation of relation between poles</font size>
Partial fraction decomposition #1
(Spoiler: $ \quad \small \mathcal{N_1} = 1i⟨4|2+3|1]^3, \quad \mathcal{N_2} = -1i⟨6|1+2|3]^3$)</font size>
Where does $⟨2|1+6|5]$ </font size> come from?
$\{⟨12⟩, [56]\}_{\epsilon} , \cap , \{⟨16⟩, s_{234}\}_{\epsilon} , \cap , \{⟨23⟩, [45]\}_{\epsilon} , \cap , \{[34], s_{234}\}_{\epsilon} , \dots$ </font size>
Partial fraction decomposition #2
(Spoiler: $ \quad \small \mathcal{N_1} = 1i[23]^3⟨56⟩^3, \quad \mathcal{N_2} = -1i[12]^3⟨45⟩^3, \quad \mathcal{N_3} = 1is_{123}^3 $)</font size>
$⟨1|2+3|4] = \{⟨12⟩, [34]\}_{\epsilon} , \cap , \{⟨23⟩, s_{234}\}_{\epsilon} , \cap , \{⟨16⟩, [45]\}_{\epsilon} , \cap , \dots$</font size> $⟨3|1+2|6] = \{⟨23⟩, [16]\}_{\epsilon} , \cap , \{⟨12⟩, s_{345}\}_{\epsilon} , \cap , \{⟨34⟩, [56]\}_{\epsilon} , \cap , \dots$</font size>
Both of these partial fractions correspond to some BCFW shift, but we are not limited to these representations.
Partial fraction decomposition #3
($\small \mathcal{N_1} = 1i[12]⟨45⟩⟨4|2+3|1]^2, , \mathcal{N_2} = 1i[23]⟨56⟩⟨6|1+2|3]^2, , \mathcal{N_3} = 1i⟨4|2+3|1]⟨6|1+2|3]s_{123}$) </font size>
We now have no spurious poles, but $s_{234}$ and $s_{345}$ appear in the same denominator, although the doubly singular limit suggests they shouldn’t.
This means that in the limit of $\{s_{234}, s_{345}\} \rightarrow \epsilon$ the individual terms will behave like $\epsilon^{-2}$ but the sum as $\epsilon^{-1}$.
Different representations can be exploited to ensure numerical stability.
Spinor ansatz
Let’s consider the first representation:
$\mathbb{f}=$ $\frac{\mathcal{N_1}}{[16]⟨23⟩⟨34⟩[56]⟨2|1+6|5]s_{234}}+$ $\frac{\mathcal{N_2}}{⟨12⟩⟨16⟩[34][45]⟨2|1+6|5]s_{345}}$
$[⟨24⟩⟨24⟩⟨24⟩[12][12][12],$ $⟨24⟩⟨24⟩⟨34⟩[12][12][13],$ $⟨24⟩⟨24⟩⟨45⟩[12][12][15],$ $⟨24⟩⟨34⟩⟨34⟩[12][13][13],$ $⟨24⟩⟨34⟩⟨45⟩[12][13][15],$ $⟨24⟩⟨45⟩⟨45⟩[12][15][15],$ $⟨34⟩⟨34⟩⟨34⟩[13][13][13],$ $⟨34⟩⟨34⟩⟨45⟩[13][13][15],$ $⟨34⟩⟨45⟩⟨45⟩[13][15][15],$ $⟨45⟩⟨45⟩⟨45⟩[15][15][15]]$,
much smaller than the one for $\mathcal{N_{LCD}}$ which had more than 1000 terms!
Gaussian elimination
$\mathbb{f}=$ $\frac{\mathcal{N_1}}{[16]⟨23⟩⟨34⟩[56]⟨2|1+6|5]s_{234}}+$ $\frac{\mathcal{N_2}}{⟨12⟩⟨16⟩[34][45]⟨2|1+6|5]s_{345}}$
Isolate the first term by generating phase space points in the limit of, say, $s_{234} \rightarrow \epsilon$.
Then we can reconstruct the numerical coefficient of the ansatz entries by Gaussian elimination.
$$ M_{ij}c_j = \mathbb{f}(P_i) \quad \text{i.e.} \quad \begin{pmatrix} \leftarrow ansatz(P_1) \rightarrow \\ \leftarrow ansatz(P_2) \rightarrow \\ \dots \end{pmatrix} \cdot \begin{pmatrix} c_1 \\ c_2 \\ \dots \end{pmatrix} = \begin{pmatrix} \mathbb{f}(P_1) \\ \mathbb{f}(P_2) \\ \dots \end{pmatrix} $$
We get:
How big is the ansatz?
Easiest to count at constant null phase weights; the size of the ansatz is a function of:1. its mass dimension ($d$) $\quad\quad$ 2. multiplicity of phase space ($m$).
$|s_{ij}| = \frac{m(m-3)}{2}$ $\quad\quad$ $|tr_5| = {m-1 \choose 4}$
$\left(\mkern -9mu \begin{pmatrix}, |s_{ij}| , \\ , d/2 , \end{pmatrix} \mkern -9mu \right) \leq$ ansatz size $\leq \left(\mkern -9mu \begin{pmatrix} , |s_{ij}| , \\ , d/2 , \end{pmatrix} \mkern -9mu \right) + |tr_5| \left(\mkern -9mu \begin{pmatrix} , |s_{ij}| , \\ , (d-4)/2 , \end{pmatrix} \mkern -9mu \right)$
The upper bound is saturated for $(\forall m \wedge d \leq 4)$ and for $(\forall d \wedge m \leq 5)$. Otherwise it is an overcounting due to Schouten identity for 4-momenta: $tr_5(2345)1_\mu - tr_5(1345)2_\mu + tr_5(1245)3_\mu - tr_5(1235)4_\mu + tr_5(1234)5_\mu = 0$</font size>
Six-gluon one-loop rational coefficients
Three mass triangle
<img src="three_mass_triangle.svg”; width=25%; height=25%; style="float:center;border:none;margin-bottom:0px;“>
$\mathcal{D_{LCD}} = ⟨12⟩[12]⟨34⟩[34]⟨56⟩[56]⟨1|3+4|2]^4⟨3|1+2|4]^4⟨5|1+2|6]^4Δ_{135}^3$</font size>
An expression was previously obtained in [16].
We obtain an explicitly rational expression, like for $\mathcal{N}=1$ SUSY in [17].
Pole structure
</font size>
Do we need square roots of momentum invariants?
All branch cuts should have been taken care of by unitarity cuts.
We should be able to explain this without using square roots.
$\Delta_{135} = (K_1 \cdot K_2)^2 - K_1^2 K_2^2$</font size>
$(\Omega_{351})^2 \equiv (2s_{12}s_{56}-(s_{12}+s_{56}-s_{45})s_{123})^2 = 4s_{123}^2\Delta_{135}-4s_{12}s_{56}\langle 4|1+2|3]\langle 3|1+2|4]$</font size>
$(\Pi_{351})^2 \equiv (s_{123}-s_{124})^2 = 4\Delta_{135}-4\langle 4|1+2|3]\langle 3|1+2|4]$</font size>
The three-mass triangle rational coefficient
A six-gluon one-loop rational part
An analytical expression for this component was previously obtained in [18] from Feynman diagrams. </font size>
The pole structure
is a bit of a mess:
<img src="GraphRational.gv.svg”; style="maxwidth:1000px; float:center; border:none;“>
The rational part
Five-partons two-loop remainders (preliminary results)
The same strategy can be applied to other rational coefficients, e.g. two-loop finite remainders given in [19].
<img src="ratios.jpg”; style="max-width:560px;float:center;border:none;“>
Example: uubggg pmpmp Nf1 #3
<img src="uubggg_pmpmp_nf1_nb3.png”; style="max-width:1024px;float:center;border:none;“>
and
are equivalent.
Hidden relations …
Relations between amplitudes in different theories are often hidden in a standard Lagrangian quantum field theory formulation.
$\mathcal{L_{Biadjoint Scalar}} = 2∂^µΦ^{aa′}∂_µΦ^{aa′}+\frac{y}{3}f^{abc}\tilde f^{a′b′c′}Φ^{aa′}Φ^{bb′}Φ^{cc′}$ </font size>
E.g. the above are related by the KLT relations [20], more generally known as double copy relations.
.. are made explicit
By comparison in the CHY formalism [21, 22, 23] these relations are made explicit in the structure of the CHY-Integrands:
Loosely speaking we have [24]:
$A = \int I_{CHY} \quad$ and $\quad A_{EG} = A_{YM} \tilde A_{YM} / A_{BS}$
Independent formulation
$\circ$ it does not rely on the Lagrangian or Feynman diagrams;
$\circ$ it is more efficient than a brute-force computation;
$\circ$ it is less efficient than recursion relations;
$\circ$ but the latter in some cases are not available.
</font size>
Scattering equations and Riemann sphere
The backbone of the CHY formalism are the scattering equations:
The $k$'s are the momenta, and the $z$'s live on the Riemann sphere.
Möbius invariance or redundancy
The scattering equations $f_a$ are invariant under Möbius transformations:
A Möbius transformation is obtained by performing the following operations on the Riemann sphere:
In general this allows us to fix three of the $z$'s:
Amplitudes from integrals
The scattering amplitudes $\textit{A}_n$ are given by:
With the following definitions:
which make $\textit{A}_n$ independent of the choice of $\{i, j, k\}$ and $\{r, s, t\}$</font size>.
Amplitudes from sums
In practice we want an algebraic equation of the amplitudes.
Change variables $z_a \rightarrow f_a$, $,$ pick up a Jacobian:
$$ϕ_{ab}, = \frac{∂ f_a}{∂ z_b}=
\begin{cases}
\frac{2 k_a \cdot k_b}{(z_a - z_b)^2} & a \neq b ; ,\\\
- \sum\limits_{j \in A \backslash {a}} \frac{2 k_a \cdot k_j}{(z_a - z_j)^2} & a = b ; .
\end{cases}$$
Integrate over the delta functions, set $\{z_1, z_2, z_3\} = \{\infty, 1, 0\}$</font size> get:
$\textit{A}_n , = , z_1^4 \cdot i \sum_{j = 1}^{(n-3)!} \frac{I_{\scriptscriptstyle CHY}(z^{(j)}(k); k; ϵ)}{\det(ϕ_{rst}^{ijk})(z^{(j)}(k); k)}$
The original scattering equations
This part of the computation depends only on the scattering multiplicity! No information about the thoery is required.
Solving the scattering equations (SE) is not trivial.
If we simply take the common denominator we obtain a polynomial of much higher degree than necessary.
The polynomial scattering equations
Instead we are going to consider the polynomial SE $h_{m}$</font size> from [25]
For example, for $n = 5$</font size>:
$h_2 = z_2 z_3 k_{\{1,2,3\}}^2+z_2 z_4 k_{\{1,2,4\}}^2+z_3 z_4 k_{\{1,3,4\}}^2$ </font size>
Elimination theory
Needed for solving systems of polynomial equations. Just like Gaussian elimination is used for the linear case.
We can rewrite the two polynomial SE for $n = 5$</font size> as:
Using the following simplified notation:
Five-point solutions
Now taking the determinant of the matrix form of the SE we get:
This is the required quadratic in $ z_4 / z_3 $</font size> .
By reintroducing $z_2$ and setting it to 1 we can then solve for $z_4$ and $z_3$:
What happens at six point?
Now we have three polynomial scattering equations:
We want to eliminate 4 variables: $$ \{1, z_2\} \otimes \{1, z_3\} = \{1, z_2, z_3, z_2 z_3\} $$ </font size>
But we only have 3 equations:
Completing the system of equations
The solution is to introduce new variables and new equations:
Now we have the same number of equations and variables, write:
Problem: the determinant is sextic
<img src="det6.png”; style="max-width:1020px;float:center;border:none;“>
Abel–Ruffini theorem: no algebraic solution for order higher than 4.
In general: $\;$ order det $\;\sim\;$ # of SE solutions $\;\sim\;$ $(n-3)!$
Solution: use a numerical root-finding algorithm
Two open source packages: seampy, lips
>>> hms(6)
⎡ s₁₂⋅z₂ + s₁₃⋅z₃ + s₁₄⋅z₄ + s₁₅⋅z₅ ⎤
⎢s₁₂₃⋅z₂⋅z₃ + s₁₂₄⋅z₂⋅z₄ + s₁₂₅⋅z₂⋅z₅ + s₁₃₄⋅z₃⋅z₄ + s₁₃₅⋅z₃⋅z₅ + s₁₄₅⋅z₄⋅z₅⎥
⎣ s₁₂₃₄⋅z₂⋅z₃⋅z₄ + s₁₂₃₅⋅z₂⋅z₃⋅z₅ + s₁₂₄₅⋅z₂⋅z₄⋅z₅ + s₁₃₄₅⋅z₃⋅z₄⋅z₅ ⎦
>>> oParticles = Particles(6)
>>> num_ss = {str(s): oParticles.compute(str(s)) for s in mandelstams(6)}
>>> sols = solve_scattering_equations(6, num_ss)
>>> len(sols)
6
>>> sols[0]
{'z3': mpc(real='#nbr', imag='#nbr'),
'z4': mpc(real='#nbr', imag='#nbr'),
'z5': mpc(real='#nbr', imag='#nbr')}
Recursion for the elimination theory matrix
$$
\mkern -24mu M_i=
\left(
\begin{array}{ccccccc}
M_{i-1} & M_{i-1}^{z_{i-3}} & 0 & \dots & 0 & 0\\
0 & M_{i-1} & M_{i-1}^{z_{i-3}} & \dots & 0 & 0\\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots\\
0 & 0 & 0 & \dots & M_{i-1} & M_{i-1}^{z_{i-3}}\\
\end{array}
\right), \quad
M_4=H, \quad
H =
\left(
\begin{array}{c}
h_1\\
h_2\\
\vdots\\
h_{n-3}\\
\end{array}
\right)
$$
$M_i$ is of dimensions $(i−4)×(i−3)$ when written in terms of $M_{i−1}$. After a derivative is taken the relevant $z_i$ is assumed to be set to zero.
Quick recap
Recall the expression for the amplitudes:
$\textit{A}_n , = , z_1^4 \cdot i \sum_{j = 1}^{(n-3)!} \frac{I_{\scriptscriptstyle CHY}(z^{(j)}(k); k; ϵ)}{\det(ϕ_{rst}^{ijk})(z^{(j)}(k); k)}$
$\circ\mkern -10mu \checkmark$ Theory independent part $z^{(j)}(k)$.
$\circ\mkern -10mu ✗$ Theory dependent part $I_{\scriptscriptstyle CHY}(z^{(j)}(k); k; ϵ)$.
Summary of considered theories
</font size>
Definitions (scalars)
The Parke-Taylor-like factor $C_n$ is defined as:
Theories involving this factor are color ordered.
The $W_1$ factor from [29]:
Definitions (matrices)
$$
B_{ab} =
\begin{cases}
\frac{2 ϵ_a \cdot ϵ_b}{(z_a - z_b)} & a \neq b ; ,\\\
0 & a = b ; ,
\end{cases}
\quad\quad
C_{ab} =
\begin{cases}
\frac{2 ϵ_a \cdot k_b}{(z_a - z_b)} & a \neq b ; ,\\\
- \sum\limits_{j \in A \backslash \{a\}} \frac{2 ϵ_a \cdot k_j}{(z_a - z_j)} & a = b ; .
\end{cases}
$$
</font size>
The Pfaffian
The determinant of anti-symmetric matrices can be written as the square of a polynomial. This polynomial is called the Pfaffian.
Note: non trivial to get the Pfaffian from the determinant, due to sign ambiguity.
The reduced Pfaffian
The matrices $A$ and $\Psi$ have two null vectors, therefore their determinant and Pfaffian are zero.
Instead use:
$\Psi_{ij}^{ij}$ denotes deletion of rows and columns $i$ and $j$.
An easy identity to spot
Born-Infeld, non linear sigma model and Galileon amplitudes involve the Pfaffian of the $n\times n$</font size> matrix $A$.
The Pfaffian of an odd-size matrix is zero, meaning in these theories only even point functions are non-vanishing.
More specifically, for Born-Infeld amplitudes this is a consequence of helicity conservation.
Numerical amplitudes
We now have all the building blocks to compute amplitudes.
With the open source packages this is straightforward:
>>> from seampy import theories, NumericalAmplitude
>>> from lips import Particles
>>> theories
[YM, EG, BS, BI, NLSM, Galileon, CG, DF2]
>>> oDF2Amp = NumericalAmplitude(theory="DF2", helconf="+++++")
>>> oParticles = Particles(5)
>>> oDF2Amp(oParticles)
mpc(real='#nbr', imag='#nbr')
Analytical reconstruction
Analytical reconstruction
Using the same strategy previously discussed we can reconstruct analytical expressions. For example:
$\circ$ singular limits for to the least common denominator;
$\circ$ doubly singular limits for partial fraction decompositions;
$\circ$ generic ansatze in singular limits for numerators;
Applications involve tree-level, one-loop and two-loop expressions alike.
$\circ$ the scattering equations, numerically solved via elimination theory;
$\circ$ CHY-Integrads, which make manifest relations between theories;
Analytical expressions are then accessible using the above strategy.
Application to the following quantities is well within reach:
$\circ$ six-parton one-loop amplitudes;
$\circ$ five-parton two-loop amplitudes;
for which we have already reconstructed several components.
Additionally it might be of interest to:
$\circ$ implement analytical expressions on GPGPU for fast evaluations;
$\circ$ reconstruct the seven-gluon one-loop coefficients;
$\circ$ assemble the NNLO three-jets cross-section;
$\circ$ apply the reconstruction technique to double copy structures.
Thank you for your attention!