lips.particle

class lips.particle.Particle(kinematics=None, real_momentum=False, field=('mpc', 0, 300))

Describes the kinematics of a single particle.

angles_for_squares()

Flips left and right spinors.

comp_twist_x(other)
property four_mom

Four Momentum with upper index: P^μ

property four_mom_d

Four Momentum with lower index: P_μ

property l_sp_d

Left spinor with index down: λ̅_α̇ (row vector).

property l_sp_u

Left spinor with index up: λ̅^α̇ (column vector).

lsq()

Lorentz dot product with itself: 2 trace(P^{α̇α}P̅̅_{αα̇}) = P^μ * η_μν * P^ν.

property mass
property r2_sp

Four Momentum Slashed with upper indices: P^{α̇α}

property r2_sp_b

Four Momentum Slashed with lower indices: P̅̅_{αα̇}

property r_sp_d

Right spinor with index down: λ_α (column vector).

property r_sp_u

Right spinor with index up: λ^α (row vector).

randomise(real_momentum=False)
randomise_finite_field()
randomise_mpc(real_momentum=False)

Randomises its momentum.

randomise_padic()
randomise_rational()
randomise_twist()
property spinors_are_in_field_extension
twist_x_to_mom(other)

lips.particles

class lips.particles.Particles(number_of_particles_or_particles=None, seed=None, real_momenta=False, field=('mpc', 0, 300), fix_mom_cons=True, internal_masses=None)

Describes the kinematics of n particles. Base one list of Particle objects.

analytical_subs_d()
angles_for_squares()

Switches all angle brackets for square brackets and viceversa.

static check_consistency(temp_string)
cluster(llIntegers)

Returns clustered particle objects according to lists of lists of integers (e.g. corners of one loop diagram).

copy()

Return a shallow copy of the list.

fix_mom_cons(A=0, B=0, real_momenta=False, axis=1)

Fixes momentum conservation using particles A and B.

four_momenta_for_mathematica(as_spinors=False)
ijk_to_3Ks(ijk)
ijk_to_3NonOverlappingLists(ijk, mode=1)
image(permutation_or_rule)

Returns the image of self under a given permutation or rule. Remember, this is a passive transformation.

insert(index, *args)

Insert object before index.

property internal_masses_dict
make_analytical_d(indepVars=None, symbols=('a', 'b', 'c', 'd'))
property masses

Masses of all particles in phase space.

momentum_conservation_check(silent=True)

Returns true if momentum is conserved.

property multiplicity
onshell_relation_check(silent=True)

Returns true if all on-shell relations are satisfied.

phasespace_consistency_check(invariants=[], silent=True)

Runs momentum and onshell checks. Looks for outliers in phase space. Returns: mom_cons, on_shell, big_outliers, small_outliers.

randomise_all(real_momenta=False)

Randomises all particles. Breaks momentum conservation.

randomise_twistor()
save_phase_space_point(invariant='')
property spinors_are_in_field_extension
property total_mom

Total momentum of the given phase space as a rank two spinor.

class lips.particles_compute.Particles_Compute
compute(temp_string)

Computes spinor strings.

Available variables: ⟨a|b⟩, [a|b], ⟨a|b+c|d], ⟨a|b+c|d+e|f], …, s_ijk, Δ_ijk, Ω_ijk, Π_ijk, tr5_ijkl

ee(i, j)

Contraction of two polarization tensors. Requires .helconf property to be set.

ep(i, j)

Contraction of polarization tensor with four momentum. Requires .helconf property to be set.

ldot(A, B)

Lorentz dot product: 2 trace(P^{α̇α}P̅̅_{αα̇}) = P_A^μ * η_μν * P_B^ν.

pe(i, j)

Contraction of four momentum with polarization tensor. Requires .helconf property to be set.

lips.particles_set

class lips.hardcoded_limits.particles_set.Particles_Set

lips.particles_set_pair

class lips.hardcoded_limits.particles_set_pair.Particles_SetPair

Module contents

Defines tools for phase space manipulations. Particles objects are base one lists of Particle objects.

Particles objects allow to:

  1. Compute spinor strings, through .compute;

  2. Construct single collinear limits, through .set;

  3. Construct double collinear limits, through .set_pair.

1oParticles = Particles(multiplicity)
2oParticles.randomise_all()
3oParticles.fix_mom_cons()
4oParticles.compute(spinor_string)
5oParticles.set(spinor_string, small_value)
6oParticles.set_pair(spinor_string_1, small_value_1, spinor_string_2, small_value_2)