lips.particle
- class lips.particle.Particle(kinematics=None, real_momentum=False, field=('mpc', 0, 300))
Describes the kinematics of a single particle.
- angles_for_squares()
Flips left and right spinors.
- comp_twist_x(other)
- property four_mom
Four Momentum with upper index: P^μ
- property four_mom_d
Four Momentum with lower index: P_μ
- property l_sp_d
Left spinor with index down: λ̅_α̇ (row vector).
- property l_sp_u
Left spinor with index up: λ̅^α̇ (column vector).
- lsq()
Lorentz dot product with itself: 2 trace(P^{α̇α}P̅̅_{αα̇}) = P^μ * η_μν * P^ν.
- property mass
- property r2_sp
Four Momentum Slashed with upper indices: P^{α̇α}
- property r2_sp_b
Four Momentum Slashed with lower indices: P̅̅_{αα̇}
- property r_sp_d
Right spinor with index down: λ_α (column vector).
- property r_sp_u
Right spinor with index up: λ^α (row vector).
- randomise(real_momentum=False)
- randomise_finite_field()
- randomise_mpc(real_momentum=False)
Randomises its momentum.
- randomise_padic()
- randomise_rational()
- randomise_twist()
- property spinors_are_in_field_extension
- twist_x_to_mom(other)
lips.particles
- class lips.particles.Particles(number_of_particles_or_particles=None, seed=None, real_momenta=False, field=('mpc', 0, 300), fix_mom_cons=True, internal_masses=None)
Describes the kinematics of n particles. Base one list of Particle objects.
- analytical_subs_d()
- angles_for_squares()
Switches all angle brackets for square brackets and viceversa.
- static check_consistency(temp_string)
- cluster(llIntegers)
Returns clustered particle objects according to lists of lists of integers (e.g. corners of one loop diagram).
- copy()
Return a shallow copy of the list.
- fix_mom_cons(A=0, B=0, real_momenta=False, axis=1)
Fixes momentum conservation using particles A and B.
- four_momenta_for_mathematica(as_spinors=False)
- ijk_to_3Ks(ijk)
- ijk_to_3NonOverlappingLists(ijk, mode=1)
- image(permutation_or_rule)
Returns the image of self under a given permutation or rule. Remember, this is a passive transformation.
- insert(index, *args)
Insert object before index.
- property internal_masses_dict
- make_analytical_d(indepVars=None, symbols=('a', 'b', 'c', 'd'))
- property masses
Masses of all particles in phase space.
- momentum_conservation_check(silent=True)
Returns true if momentum is conserved.
- property multiplicity
- onshell_relation_check(silent=True)
Returns true if all on-shell relations are satisfied.
- phasespace_consistency_check(invariants=[], silent=True)
Runs momentum and onshell checks. Looks for outliers in phase space. Returns: mom_cons, on_shell, big_outliers, small_outliers.
- randomise_all(real_momenta=False)
Randomises all particles. Breaks momentum conservation.
- randomise_twistor()
- save_phase_space_point(invariant='')
- property spinors_are_in_field_extension
- property total_mom
Total momentum of the given phase space as a rank two spinor.
- class lips.particles_compute.Particles_Compute
- compute(temp_string)
Computes spinor strings.
Available variables: ⟨a|b⟩, [a|b], ⟨a|b+c|d], ⟨a|b+c|d+e|f], …, s_ijk, Δ_ijk, Ω_ijk, Π_ijk, tr5_ijkl
- ee(i, j)
Contraction of two polarization tensors. Requires .helconf property to be set.
- ep(i, j)
Contraction of polarization tensor with four momentum. Requires .helconf property to be set.
- ldot(A, B)
Lorentz dot product: 2 trace(P^{α̇α}P̅̅_{αα̇}) = P_A^μ * η_μν * P_B^ν.
- pe(i, j)
Contraction of four momentum with polarization tensor. Requires .helconf property to be set.
lips.particles_set
- class lips.hardcoded_limits.particles_set.Particles_Set
lips.particles_set_pair
- class lips.hardcoded_limits.particles_set_pair.Particles_SetPair
Module contents
Defines tools for phase space manipulations. Particles objects are base one lists of Particle objects.
Particles objects allow to:
Compute spinor strings, through .compute;
Construct single collinear limits, through .set;
Construct double collinear limits, through .set_pair.
1oParticles = Particles(multiplicity)
2oParticles.randomise_all()
3oParticles.fix_mom_cons()
4oParticles.compute(spinor_string)
5oParticles.set(spinor_string, small_value)
6oParticles.set_pair(spinor_string_1, small_value_1, spinor_string_2, small_value_2)