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Abstract

The Cachazo-He-Yuan (CHY) formalism describes interactions among sub-atomic particles and
allows the computation of scattering amplitudes. It is equivalent to, and at the same time funda-
mentally different from, the perturbative treatment of quantum field theory using Feynman diagrams
(up to tree-level). It deals in particular with the scattering of n massless particles in an arbitrary
D-dimensional flat space-time. This is achieved by a map from momentum space to the Riemann
sphere with punctures. Starting from this map, we discuss the so-called Scattering Equations, the
proof for their polynomial form by Dolan and Goddard, and their general solution in terms of the
determinant of a (n−3)!×(n−3)! matrix. A program in Mathematica to perform these involved cal-
culations for general n is given as well. Finally, we briefly discuss of how the scattering amplitudes
can be obtained.
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◦ Demonstration of the Möbius invariance of the SE - see Appendix IV

3.2 The Full Symmetry Problem
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1. General Introduction

At the beginning of the last century important scientific results were obtained by relying on quan-
tization procedures, the most famous probably being Plank’s solution to the black-body radiation
problem in 1900, Einstein’s 1905 paper on the photoelectric effect, and Bohr’s 1913 model of the
atom. Quantum mechanics was born. Since then, the need to extend the quantization to the theory
of fields become evident. Over the years, work done by many important physicists (Dirac, Fermi,
Feynman, Fock, Pauli, and others) led to the development of quantum field theories (QFT), such as
quantum electrodynamics (QED) and quantum chromodynamics (QCD). These are the backbone of
the Standard Model, which constitutes our best, experimentally tested, understanding of physics at
the subatomic scale.

QFTs can be discussed in roughly three steps.
First of all, a sensible starting point is classical field theories [1]. Their fundamental object is the La-
grangian density. The equations of motion of the field are obtained by minimizing the action, defined
as an integral of the Lagrangian density over space-time. Further important elements are the currents
and the conserved charges corresponding to symmetries of the Lagrangian (Noether’s theorem).
As a brief reminder, we can consider classical electrodynamics. The Lagrangian is given by:

L = −1

4
FµνF

µν −AµJ
ν with Fµν = (∂µAν)− (∂νAµ),

where Aµ and Jν are 4-vector defined as Aµ = (φ,A), with φ and A the usual scalar and vector
potentials, and Jν = (ρ, j), with ρ the charge density and j the current. Minimizing the action yields
the Euler-Lagrange equations, which, in this case, are indeed Maxwell’s equations (two of the four):

∂µF
µν = Jν .

The other two are given by the Bianchi’s identity:

∂ρFµν + ∂µFνρ + ∂νFρµ = 0.

Noether’s theorem applied to space-time translations yields the energy-momentum tensor (ignoring
the source term AµJ

ν):

Tµν = −Fµρ∂νAρ +
1

4
ηµνFρσF

ρσ.

Secondly, the quantization of classical field theories is usually done via a Canonical (or Second) Quan-
tization [2]. It requires to translate the Lagrangian into an Hamiltonian, and then to impose canonical
commutation relations to the fields and momenta, or to certain coefficients, which are promoted to
creation and annihilation operators. Particles are then nothing more than excitations (or quanta) of
these fields.
Finally, the quantities we want to compute are probability amplitudes for scattering events [3],[4]. For
instance, we may want to know the probability of obtaining quark-antiquark pairs by electron-positron
annihilation: e+e− → γ → qq̄. The mathematical formula for the amplitude, as written in [3], is:

A = lim
t±→±∞

〈f |U(t+, t−) |i〉 = 〈f |S |i〉 ,

where |i〉 and |f〉 are the initial and final states, and U(t+, t−) is the propagator (which describes
the probability of going from an initial state at time t− to a final state at t+). In the above limit,
the propagator is usually written with just the letter S and is known as the S-Matrix. This matrix
element will probably be familiar to the reader; for example, it appears in Fermi’s Golden Rule for
transition rates.
Scattering amplitudes are usually computed using Feynman’s diagrams and integration rules. How-
ever, this type of computation can easily become very complex, especially when a large number of
diagrams are involved. Therefore, it is important for the advancement of the field to give serious
consideration to alternative - but equivalent - formalisms, for they may provide new insights, allow
easier computations, or be more easily generalized to new theories.

2



In this report we discuss the formalism recently introduced by Cachazo, He and Yuan [CHY] [5]-[9]
for the computation of tree level scattering amplitudes of massless particles in a flat space-time of
arbitrary dimensions. We will not try to show the logical or mathematical equivalence between this
formalism and the standard theory briefly presented above, since this would require us to directly
discuss string theories. Instead, we will develop the formalism and show that it yields the correct
expressions for the scattering amplitudes.
We will focus in particular on the aspect of the formalism that appears to be generalizable to a number
of different theories, that is the so called Scattering Equations [SE] and their solutions. A version of
these equations was first discovered in the 1970s by Fairlie and Roberts [10]-[12] in the context of
emerging string theories and rediscovered later by Gross and Mende [13] and CHY.

The Scattering Equations encode the kinematics of the scattering process in a fundamentally different
fashion compared to the standard quantum field theory. Whereas QFT generalizes the classical con-
cepts of action, Lagrangian and Hamiltonian via a Canonical Quantization as we have discussed above,
the SE are based on a map from momentum space to the Riemann sphere1 and the thereby defined
punctures (special points on the sphere). Unfortunately, working in this complex space implies that
the physical meaning of intermediate results is rather obscure. However, the scattering amplitudes -
which are the real quantities we are interested in as physicists, since they are the observables - have
been shown to nicely reproduce the correct results for several theories. For instance, the correspon-
dence to Yang-Mills tree amplitudes has been proven by Dolan and Goddard in [14].

In this report, on the one hand, we specialize to massless particles because understanding the CHY
formalism in this limit is essential before moving on to the massive case. In fact, the latter was in-
vestigated as a generalization of the massless limit and is considerably more mathematically involved
(for instance, eq. (3.1) would have be to replaced by eq. (1.8) of reference [14]). On the other hand,
our discussion is valid for particles of arbitrary spin, colour, and charge, since these properties of the
particles are not reflected by the SE (they are instead encoded in Ψ̂, see eq (6.1)). As a consequence,
by the end of the report, we have almost all elements necessary to compute amplitudes involving
real-world processes like a three gluon interaction (Figure 1).

Figure 1: Three gluon Feynman dagram.

What we do compute explicitly in section 6 via a contour integral encircling the solutions of the SE
is the massless φ3-theory, 4-particles scattering amplitude. The relevant Feynman diagrams for this
process are given in Figure 2.

Figure 2: Feynman diagrams for the massless φ3-theory, 4-particles scattering amplitude.

The computation of the scattering amplitude following the Feynman rules is rather straightforward
(for instance, see section 1.5 of [3]) and indeed both approaches yield the same expression (eq. (6.2)).

1Complex plane plus the point at infinity, which is topologically a sphere - see Appendix I.
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The structure of this report is hereby outlined.
In section 2 we will introduce notation and the key relation between the momenta and the punctures
(eq. (2.1)). This will constitute our starting point and as such will be taken as given. All other results
up to the end of section 5 will be explicitly derived from this one, together with basic assumptions
on the momenta. In this section we also give a proof for the expression of the polynomial in the
numerator of the integrand in equation (2.1) - see Appendix II for details.
This result is then used in section 3 to prove the CHY expression for the Scattering Equations (eq.
(3.1)) - algebra in Appendix III. The results of these proofs can be found in the references (more
specifically at the beginning of [6]), but the proofs themselves here presented were left as exercises for
the readers. In section 3.1 we show that the SE are Möbius invariant (Appendix IV), and in section
3.2 we investigate the presence - or, as a matter of fact, the absence - of additional symmetries to the
SE (Appendix V).
In section 4 we discuss how the SE can be recast into polynomial form, as shown by Dolan and
Goddard in [15]. An explanation of the quantitative aspects of their reasoning can be found in section
VI of the Appendix.
Then, in section 5 we explain how the SE can be solved using an elimination algorithm, as presented in
another paper by DG [16] and in a similar paper by Cardona and Kalousios [17]. We wrote a program
in Mathematica based on this elimination algorithm, and then we improved it by implementing a
faster recursion algorithm, similar to that of CK. The program itself and sample outputs can be found
in section VII of the Appendix.
In section 6 we briefly discuss how the scattering amplitudes can be obtained by integrating over the
solutions to the SE and accounting for permutations. In particular, as an example, we look at the
simplest possible theory, that is scalar φ3 theory.
Lastly, conclusions and final comments are given in the section 7.

2. Mathematical Introduction and Notation

In this section we will establish the mathematical notation - largely following that of CHY - and
explain origin and properties of key equations.

The subject of our analysis will be the scattering of n massless particles in D − 1 spatial dimensions.
In analogy to special relativity 4-vectors, the n particles momenta will be kµa , with a ∈ A,

A = {1, ..., n},

indexing the particle and µ ∈ {0, 1, ..., D−1} indexing the space-time components. The inner product
is defined as k2 = kµkµ = kµηµνk

ν , with ηµν a generalized Minkowski metric diag(+1,−1, ...,−1).

Two basic properties we require are the massless and the null conserved momenta conditions, respec-
tively given by:

k2a = 0 ∀a ∈ A and
∑
a∈A

kµa = 0 ∀µ.

The first condition is simply E2− p2 = m2 = 0 for massless particles. The second condition is slightly
trickier. We are claiming that the sum of each component of D-momentum over all the n particles
is zero. Usually we would have a set of incoming and a set of outgoing particles (Figure 3 (a)). For
this situation we require

∑
a∈incoming k

µ
a =

∑
b∈outgoing k

µ
b , that is energy-momentum conservation.

However, we may as well set all the particles to, say, be going in (Figure 3 (b)). Then the above
equation reads

∑
a∈all particles k

µ
a = 0, where we understand that particles with negative energy (µ = 0

component) need to be taken on the other side of the equal sign and interpreted as particles with
positive energy leaving the scattering process. This is completely analogous to Kirchhoff’s current law
in circuit theory.
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Figure 3: (a) Particles coming in and going out, all with positive energy.

(b) All particles coming in. Negative energy particles are understood to be outgoing particles with positive energy.

Let us now define the Riemann sphere (Σ) as the one-point compactification of the complex plane
(C) with the point at complex infinity (∞̃): Σ ≡ C ∪ ∞̃ (For further details on the Riemann sphere
see Appendix I). The n punctures - that is the n special points on the sphere that are related to the
particles’ momenta - are given the symbol σa, with a ∈ A.
It has been shown in [5] that the relation between the scattering data and the punctures is given by:

kµa =
1

2πi

∮
|z−σa|=ε

dz
pµ(z)∏

b∈A(z − σb)
, (2.1)

where pµ(z) are D polynomials with coefficients depending on the momenta (k) and the punctures (σ).
Equation (2.1) can be viewed as sets of n equations for each of these polynomials. If we assume all
the σ’s to be distinct and pµ(z) to be non singular at the pole, then - using Cauchy’s residue theorem
- we obtain:

kµa =
1

��2πi
×��2πi× Res

z→σa

=
pµ(σa)∏

b∈A
b6=a

(σa − σb)
,

and therefore:

pµ(σa) = kµa
∏
b∈A
b 6=a

(σa − σb) . (2.2)

We will now introduce the following notation, as in [6]. Define {σ}mb as the symmetrized product of
m σ’s which do not involve σb:

{σ}mb ≡ (−1)m
∑

{ai}⊆A\{b}

σa1σa2 ...σam . (2.3)

Then, we may rewrite eq. (2.2) as:

pµ(σa) = kµa

n−1∑
m=0

σm
a {σ}n−1−m

a , (2.4)

where we are also defining {σ}0a to be 1. Since eq. (2.4) must hold for any a, we would like to rewrite it
in a way that makes the coefficients of σm

a explicitly symmetric in the punctures σ’s and the momenta
k’s. Such an expression is given by (proof in Appendix II):

pµ(σa) =
∑
b∈A

kµb

n−2∑
m=0

σm
a {σ}n−1−m

b . (2.5)

We can then conclude from eq. (2.5) that the general expression for pµ(z) must be given by:
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pµ(z) =
n−2∑
m=0

∑
b∈A

kµb z
m{σ}n−1−m

b . (2.6)

This is exactly what one obtains by combining equations (2.3) and (2.4) in reference [6].

3. The Scattering Equations

Thus far, we have shown that pµ(z) are D degree n−2 polynomials and we have found their coefficients
in terms of the punctures and the momenta. However, the punctures themselves are defined by eq.
(2.1) and, therefore, the next step is to find the equations relating the punctures to the momenta.
These are the so called Scattering Equations. They encode the kinematics of the scattering process
into the language of the punctured Riemann sphere. The solutions of the SE allow to compute the
scattering amplitudes. Since the momenta appear only in dot products, the Lorentz invariance is
automatically guaranteed.

The SE are most naturally obtained by translating the massless conditions k2a = 0 to conditions on
the polynomials pµ(z), in particular eq. (2.1) requires p(z)2 = 0 ∀z. Since p(z)2 is a polynomial
of degree 2n − 4 and it is not monic, we require 2n − 3 (i.e. degree + 1) independent conditions to
specify it. n of these are found by evaluating p(z)2 at each of the punctures. Equation (2.2) shows
that these simply give k2a = 0. The remaining n− 3 conditions are what we are looking for and they
are given by d

dzp
2(z) = 0, i.e. by p(z) · p′(z) = 0. Evaluating this last condition at the punctures, i.e.

p(σa) · p′(σa) = 0, leads to the Scattering Equations (details in Appendix III):

fa(σ, k) ≡
∑
b∈A
b 6=a

ka · kb
σa − σb

= 0, ∀a ∈ A . (3.1)

We can show that of these n equations only n− 3 are independent by looking at the symmetry of the
punctures. We must expect the σ’s not to be completely fixed by the Scattering Equations because
for the polynomial p(z)2 to be zero ∀z it must be effectively in more variables than just z, otherwise
it would have at most as many solutions as its degree (2n− 4).

3.1 The Möbius Invariance

The coordinates of the Riemann sphere under a Möbius transformation transform as follows:

z → ζ =
αz + β

γz + δ
, (3.2)

where the four complex parameters α, β, γ and δ, in order to avoid cancellation between numerator
and denominator, must also satisfy the following condition:

α(z + β/α)

γ(z + δ/γ)
→ β/α 6= δ/γ or αδ − βγ 6= 0 .

Showing that the Scattering Equations are invariant under this transformation is quite simple (cf.
equation (1.5) of reference [15], for instance). For completeness we have reproduced the proof in
details in Appendix IV.

In the literature it is customary to partially fix the Möbius Invariance. In particular, it is convenient
to let σ1 = ∞ and σn = 0. We can understand this geometrically as fixing the north and south pole
of the Riemann sphere. Rewrite equation (3.2) as:

�δ(
α
δ σa +

β
δ )

�δ(
γ
δ σa + 1)

− renaming → ασa + β

γσa + 1
.
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Then, σ1 = ∞ and σn = 0 respectively force γ = 0 and β = 0. This leaves us with: σa → ασa. By
writing α = rαe

iφα it is clear that the Möbius transformation consists now of just a rotation and/or
scaling of the Riemann sphere.

Although we have shown that the Scattering Equations are invariant under Möbius Transformation,
we have not mathematically shown that this is their full symmetry. It does seem to be the case, since
we were looking for 2n − 3 conditions and we have found that many, but a rigorous proof would be
nice nonetheless.

3.2 The Full Symmetry Problem

An additional symmetry in the Scattering Equations would lower the number of independent ones
below n−3 and thus require us to look somewhere else for the remaining conditions. We have already

set p(z)2|z=σa = 0 and d
dzp(z)

2|z=σa = 0, therefore it would be natural to look at d2

dz2
p(z)2|z=σa = 0

next. This is indeed the case:

d2

dz2
p(z)2|z=σa = 0 → p′(σa)

2 + p(σa) · p′′(σa) = 0 .

Our analysis (see Appendix V) shows that the second derivative of p(z)2 vanishes identically provided
both the Scattering Equations and the basic assumptions on the momenta are satisfied. Therefore,
it would seem that it is not possible to obtain additional conditions for the punctures, meaning that
Möbius should be the full symmetry. This is actually implicitly proven by fixing 3 punctures and
finding (n− 3)! solutions for the remaining ones, as in [6] and [15].

Indeed, the next step would be to solve the Scattering Equations. However, to do so with the form given
by equation (3.1) is rather impractical. In fact, once we eliminate the denominators by multiplying
by
∏

b∈A
b 6=a

(σa − σb) we obtain a system of n equations, each of which is of much higher order in the σ’s

than necessary.

4. The Scattering Equations in Polynomial Form

A solution to this problem was found by Dolan and Goddard in reference [15]. They managed to
recast the Scattering Equations to a system of n− 3 homogeneous equations in the punctures, using
their notation:

hm =
∑
S⊂A′

|S|=m

k2S1
σS = 0 with A′ = A/{1, n} and S1 = S ∪ {1} , (4.1)

where kS and σS are defined as follows:

kS =
∑
b∈S

kb and σS =
∏
b∈S

σb .

In this expression each hm is of order m in the σ’s and has the additional nice feature of being linear
in each puncture taken separately. What follows is an explanation of DG’s reasoning to derive eq.
(4.1) from eq. (3.1). Since this requires some involved algebra, the mathematics is presented in
Appendix VI. The proof is mainly as in [15], with some slight changes in a couple of steps, mostly to
keep things as easy and clear as possible.

The existence of hm’s is suggested, if not guaranteed, by the combination of two facts. The first
one is that the algorithm presented by CHY in section 3 of reference [6] proves that the number of
solutions to the Scattering Equations is (n− 3)!. The second one is that Bézout’s theorem states that
the number of solutions to a system of polynomials is bounded by the product of their degrees and
that this bound may be attained if the equations are suitably written. Therefore, not only hm’s are
of much lower degree than fa’s, but they are also as low as they can get.
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The first step to obtain (4.1) from (3.1) is to prove that the Scattering Equations fa = 0, a ∈ A are
equivalent to gm = 0, 2 ≤ m ≤ n− 2, with gm defined as:

gm(σ, k) =
∑
a∈A

σm+1
a fa(σ, k) . (4.2)

This is the first proposition proven in Appendix VI.

The next step is to introduce the following polynomials:

h̃m =
∑
S⊂A
|S|=m

k2SσS = 0 , (4.3)

and prove that h̃m = 0 are equivalent to fa = 0 by proving that h̃m = 0 and gm = 0 are equivalent.
This requires more involved algebra and it is the second proposition proven in Appendix VI.

At this point the hm’s are obtained from the h̃m’s fixing the Möbius invariance by letting σ1 → ∞
and σn → 0, as discussed before. The consequence of this is that in equation (4.3) only the subsets S
of A including the element {1} and not the element {n} will survive. Formally:

hm = lim
σ1→∞

h̃m+1|σn=0

σ1
=
∑
S⊂A′

|S|=m

k2S1
σS = 0 with A′ = A/{1, n} and S1 = S ∪ {1} .

We are now in a much better position to solve these equations.

5. Solving the Scattering Equations

The work presented here is based on two very recent and relatively similar papers: [16] by Dolan and
Goddard and [17] by Cardona and Kalousios.
We follow their reasoning to obtain a (n − 3)! × (n − 3)! square matrix, whose determinant provides
an homogeneous equation in σn−1 and σn−2, of order (n − 3)! and independent of all the other σ’s.
This can be viewed as an equation for σn−2/σn−1 and provides the foundation of the solution.
We wrote a program in Mathematica based on a recursive algorithm, similar to that of CK, to gen-
erate this determinant for arbitrary n. It can be found, together with sample outputs, in Appendix VII.

It is extremely useful to consider a couple of examples in order to recognize the underlining pattern
before moving on to the general case.
n = 4: this is trivial, we have one equation and it is the equation we are looking for:

h1 = σ2k
2
{1,2} + σ3k

2
{1,3} = 0 .

n = 5: we now have two equations in three knowns:

h1 = σ2k
2
{1,2} + σ3k

2
{1,3} + σ4k

2
{1,4} ,

h2 = σ2σ3k
2
{1,2,3} + σ2σ4k

2
{1,2,4} + σ3σ4k

2
{1,3,4} .

We wish to eliminate σ2. In order to do so, define:

H =

(
h1
h2

)
and Hσ2 = ∂σ2

(
h1
h2

)
.

Then we may rewrite the Scattering Equations as:
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(
H Hσ2

)
|σ2=0 ·

(
1
σ2

)
=

(
σ3k

2
{1,3} + σ4k

2
{1,4} k2{1,2}

σ3σ4k
2
{1,3,4} σ3k

2
{1,2,3} + σ4k

2
{1,2,4}

)
·
(

1
σ2

)
= 0 ,

which is satisfied if the determinant vanishes. Explicitly:

σ2
3k

2
{1,3}k

2
{1,2,3} + σ4σ3

(
k2{1,4}k

2
{1,2,3} + k2{1,3}k

2
{1,2,4} − k2{1,2}k

2
{1,3,4}

)
+ σ2

4k
2
{1,4}k

2
{1,2,4} = 0 ,

giving the required second order homogeneous equation in σ3 and σ4. We may then find σ2/σ4 for
each of the two solutions using h1 = 0.
A final comment on this case, as one sees this reasoning requires us to evaluated the (H,Hσ2) matrix
at σ2 = 0. However, by adding σ2H

σ2 to the first column, we obtain the same matrix not evaluated
at σ2 = 0. Since we are taking a determinant we can conclude that setting σ2 = 0 is not necessary,
and indeed this result has been shown by DG in [16] to generalize to all n. However, since calculations
become quickly cumbersome as n increases it may be convenient to set σ’s to zero whenever possible.

n = 6: the Scattering Equations now are:

h1 = σ2k
2
{1,2} + σ3k

2
{1,3} + σ4k

2
{1,4} + σ5k

2
{1,5} ,

h2 = σ2σ3k
2
{1,2,3} + σ2σ4k

2
{1,2,4} + σ3σ4k

2
{1,3,4} + σ2σ5k

2
{1,2,5} + σ3σ5k

2
{1,3,5} + σ4σ5k

2
{1,4,5} ,

h3 = σ2σ3σ4k
2
{1,2,3,4} + σ2σ3σ5k

2
{1,2,3,5} + σ2σ4σ5k

2
{1,2,4,5} + σ3σ4σ5k

2
{1,3,4,5} .

We wish to eliminate σ2 and σ3. To achieve this we may use a mathematical technique known as
Elimination Theory, as it is done in both [16] and [17]. The idea is to introduce new variables and
new equations until the system is over-specified and yield a consistency condition in the form of
det(M) = 0, as in the n = 5 case.

In this case we wish to eliminate 4 variables (including “1”): {1, σ2} ⊗ {1, σ3} = {1, σ2, σ3, σ2σ3}, but
only have 3 equations: {h1, h2, h3}. Therefore we introduce another factor of {1, σ3} and obtain a
new set of 6 variables: V T = {1, σ3}⊗{1, σ2, σ3, σ2σ3} = {1, σ2, σ3, σ2σ3, σ2

3, σ2σ
2
3}, and a new set of 6

equations: {1, σ3} ⊗ {h1, h2, h3} = {h1, h2, h3, σ3h1, σ3h2, σ3h3}. Now that we have as many variables
as equations, we can obtain the consistency condition det(M) = 0, since:

M · V =

(
H Hσ2 Hσ3 Hσ2σ3 0 0
0 0 H Hσ2 Hσ3 Hσ2σ3

)
·


1
σ2
σ3

σ2σ3
σ2
3

σ2σ
2
3

 = 0 .

As for the n = 5 case, M can be understood as the matrix of coefficients (setting σ2, σ3 = 0) and
multiplying it by the vector of variables V gives back the set of 6 equations given above. Note that the
first line of M gives the sub set {h1, h2, h3}, which does not depend on {σ2

3, σ2σ
2
3}, and the second line

give {σ3h1, σ3h2, σ3h3}, independent of {1, σ2}. Also, it should be clear that now HT = (h1, h2, h3).

General n: In general we have n − 3 equations, hm 1 ≤ m ≤ n − 3, in n − 2 unknowns, σi 2 ≤
i ≤ n − 1. The original set of 2n−4 variables we wish to eliminate using elimination theory is given
by: V T = {1, σ2} ⊗ {1, σ3} ⊗ ... ⊗ {1, σn−3}. We introduce a set W T = {1} ⊗ {1, σ3} ⊗ {1, σ4, σ2

4} ⊗
... ⊗ {1, σn−3, ..., σ

n−5
n−3}, which contains (n − 4)! terms. The new set of variables is then given by

V T → V T ⊗W T = {1, σ2}⊗{1, σ3, σ2
3}⊗ ...⊗{1, σn−3, ..., σ

n−4
n−3}, of length (n−3)!. Similarly, the new

(n− 3)! equations are given by HT → HT ⊗W T . Then, taking partial derivatives of the entries of H
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w.r.t. those of V we construct the (n − 3)! × (n − 3)! matrix M whose determinant is the required
equation.

Although this is the underlining reasoning, it is quite inefficient, even for a computer program. Instead,
we can realize that each successive matrix, call it Mn, contains the previous one, call it Mn−1, repeated
in some order and combined with zeros. Therefore, we can write a recursive relation to obtain the
desired matrix. This is analogous to what Cardona and Kalousios do in [17]. An important point
that we would like to stress here is that this approach allows us not to worry at all about what new
variables and equations we are introducing, making the computation a lot faster. Of course a proof for
this algorithm would have its foundation in the structure of the successive tensor products discussed
above. With our notation we have:

Mi =


Mi−1 M

σi−3

i−1 0 0 . . . 0 0
0 Mi−1 M

σi−3

i−1 0 . . . 0 0
0 0 Mi−1 M

σi−3

i−1 . . . 0 0
...

...
...

. . .
. . .

...
...

0 0 0 0 . . . Mi−1 M
σi−3

i−1

 , M4 = H, H =


h1
h2
...

hn−3

 ,

with Mi of dimensions (i− 4)× (i− 3) when written in terms of Mi−1. For example, take n = 6:

M6 =

(
M5 Mσ3

5 0
0 M5 Mσ3

5

)
, M5 =

(
M4 Mσ2

4

)
, M4 = H, H =

 h1
h2
h3

 ,

which agrees with our discussion in the examples above.

An important feature of this matrix which allows to make the computation faster is that each set of
(n−3) rows (when written explicitly in terms of the hi’s) is a cyclic permutation of the first. Therefore,
computing the first (n− 3) rows gives the full matrix (after appropriate permutations).

Finally, the remaining σ’s may be found by reintroducing them one at a time in the matrix and
eliminating the appropriate column. For instance, say we would like to find σ2, then all that we
need to do is add σ2 × second column to, say, the first column and then remove the second column.
Note how this procedure leaves the system of equations (written as matrix of coefficients × vector of
variables) unchanged. Removing any row, say the last one, makes the matrix square again. σ2 is then
obtained by setting the determinant of this new matrix to zero. Indeed, following this procedure for
n = 5 gives back h1 = 0 (see the n = 5 example in the previous page).

6. Scattering Amplitudes

We will now show how performing an integral over the solutions to the Scattering Equations yields
the tree level scattering amplitudes. In [6] CHY proposed and presented evidence for an expression
for the amplitudes. This formula was later proven by DG in [14] to be correct for Yang-Mills theories.
Mathematically we have:

An =

∫
Ψ̂n(σ; k; ε)

∏
a∈A

′δ(fa(σ, k))
∏
a∈A

dσa
(σa − σa+1)2

/dω ,

or, more explicitly as a contour integral:

An =

∮
O
Ψ̂n(σ; k; ε)

∏
a∈A

′ 1

fa(σ, k)

∏
a∈A

dσa
(σa − σa+1)2

/dω , (6.1)

where the contour O encircles all the non arbitrarily fixed, possibly complex, solutions to the Scattering
Equations. The other symbols are defined as follows:

10



∏
a∈A

′ = (σi − σj)(σj − σk)(σk − σi)
∏
a∈A

a6=i,j,k

,

dω =
dσrdσsdσt

(σr − σs)(σs − σt)(σt − σs)
.

In particular the latter is the Möbius group measure. We can intuitively understand that these
definitions make the amplitude independent of the particular choice of punctures, since choosing
i, j, k = r, s, t and taking these 3 as the arbitrarily fixed punctures makes the integral over them drop
out. Finally, the first term in the integral, Ψ̂, depends on the particular theory we want to consider.

As an example, we will now compute the 4-particles amplitude for φ3 theory. That is, the theory
which is described in standard QFT language by the following Lagrangian:

L =
1

2
∂µφ∂

µφ+ (g/3!)φ3 .

For this theory we have Ψ̂ = constant. Also take i, j, k = 1, 2, 4 respectively and σ1 = ∞, σ4 = 0 (as
done before) and σ2 = 1. This completely fixes the Möbius invariance. Writing out equation (6.1)
explicitly we obtain:

Aφ
4∝
∮
O
(((((σ1 − σ2)(σ2 − σ4)(((((σ4 − σ1)

1

f3(σ, k)
��dσ1��dσ2dσ3��dσ4

����(σ1 − σ2)
2(σ2 − σ3)2(σ3 − σ4)2����(σ4 − σ1)

2

(((((σ1 − σ2)(σ2 − σ4)(((((σ4 − σ1)

��dσ1��dσ2��dσ4

,

Aφ
4 ∝

∮
O

(σ2 − σ4)
2

(σ2 − σ3)2(σ3 − σ4)2
1

f3(σ, k)
dσ3 =

∮
O

1

(1− σ3)2(σ3)2
1

f3(σ, k)
dσ3 .

Recall equation (3.1):

f3(σ, k) =
k3 · k1
σ3 − σ1

+
k3 · k2
σ3 − σ2

+
k3 · k4
σ3 − σ4

=
k3 · k2
σ3 − 1

+
k3 · k4
σ3

.

Hence:

Aφ
4 ∝

∮
O

1

(1− σ3)σ3(k3 · k2σ3 + k3 · k4(σ3 − 1))
dσ3 .

We can now explicitly state the that the contour O encircles the value of σ3 satisfying f3 = 0:

k3 · k2σ3 + k3 · k4(σ3 − 1) = 0 =⇒ σ3 =
k3 · k4

k3 · k2 + k3 · k4
.

A quick sanity check can be done by looking back at section 5. There we found that for n=4:

h1 = σ2k
2
{1,2} + σ3k

2
{1,3} = 0 =⇒ σ3 = −

k2{1,2}

k2{1,3}
= −k1 · k2

k1 · k3
=

k3 · k4
k3 · k2 + k3 · k4

.

In the last step we need to use the null conserved momenta condition: k1 + k2 + k3 + k4 = 0 =⇒
k1 · k2 = k3 · k4 and k1 · k3 = −(k2 + k4) · k3.
We can now write:

Aφ
4 ∝

∮
O

1

(1− σ3)σ3(k3 · k2 + k3 · k4)(σ3 − k3·k4
k3·k2+k3·k4 ))

dσ3 ,

and using Cauchy’s residue theorem:
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Aφ
4 ∝ 1

(1− k3·k4
k3·k2+k3·k4 )

k3·k4
(((((
k3·k2+k3·k4(((((((((

(k3 · k2 + k3 · k4)
=

k3 · k2 + k3 · k4
k3 · k2 k3 · k4

=
1

k3 · k2
+

1

k3 · k4
.

We can recast this in terms of the Mandelstam variables to obtain: Aφ
4 ∝ 1/s+ 1/t.

The final result is obtained by accounting for the 6 permutations of {2, 3, 4} and by reintroducing the
appropriate coupling constant:

Aφtot
4 =

g2

s
+

g2

t
+

g2

u
, (6.2)

which is indeed in agreement with the QFT computation.

7. Conclusions

In this report we have shown how the CHY formalism constitutes an alternative to Feynman dia-
grams for the computation of tree-level scattering amplitudes. In particular, we have given a clear
mathematical derivation of the Scattering Equations and their solutions. As already mentioned, the
physical meaning of intermediate results, such as the individual solutions of the SE, even if present is
unfortunately still unknown.

In the light of the work recently done by Dolan, Goddard, Cardona, and Kalousios to obtain explicit
solutions for the Scattering Equations (discussed in sections 4 and 5), our inquiry into possible further
symmetries of the SE (presented in section 3.2 and Appendix V) turned out to be superseded. Still,
it was nice to obtain the expected result (no further conditions on the punctures besides the SE).
Our program in Mathematica (given in Appendix VII) allowed us to easily recover the correct matrix
for the solutions to the SE for n ≤ 7, as given by DG in [16]. Furthermore, it made the computation
feasible even for systems with a higher number of particles (n ≥ 8). Given additional time, it would be
interesting to have the program compute the determinant of the matrix as well, and possibly integrate
over the solutions to obtain the scattering amplitudes.

Finally, given the already present possibility of generalizing this formalism to massive, coloured and
non-scalar particles as discussed in [8] and [14], future investigation could be aimed at obtaining an
expression for the scattering amplitudes valid beyond tree-level. This could provide an additional tool
for the computation of high precision quantities for accelerator based experiments, both within and
beyond the SM. Furthermore, given the substantially different structure of this formalism compared
to standard Feynman diagrams computations, it may be possible to achieve shorter computational
times and push the precision limits of current predictions.
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Appendix I: The Riemann Sphere

The Riemann sphere, or extended complex plane, (Σ) is defined as the one-point compactification of
the complex plane (C) with the point at complex infinity (∞̃): Σ ≡ C∪∞̃. Complex infinity is defined
as the “complex number” (z = reiφ) having infinite modulus (r = ∞) and undefined argument (φ).
The neighbourhood of each point has to be defined as well. For all points except infinity it is trivially
defined by an identity map to the complex plane. As far as the point at infinity is concerned, we send
it to zero and all other points z 6= 0 to 1/z.
This definition allows functions such as f(z) = 1/z to be well behaved everywhere, since we can now
define 1/0 = ∞̃, with ∞̃ ∈ Σ. Note that this is not well defined in C since ∞̃ /∈ C. For this reason a
lot of complex analysis is actually performed on the Riemann sphere rather than in the complex plane.

The topological equivalence to a sphere is most easily observed with a stereographic projection (Figure
I). Consider the complex plane and a sphere centred at the origin with unit radius, such that the com-
plex plane is the equatorial plane of the sphere. Then, for each point on the complex plane consider
the straight line going though it and through the north pole of the sphere. The intersection of this
line with the sphere defines an (almost) one to one correspondence between the points on the plane
and those on the sphere: the origin is mapped to the south pole, points on the equator are mapped
to themselves and each point z = reiφ, r < 1 (r > 1) goes to a point on the southern (northern)
hemisphere. The only point on the sphere not having a corresponding point on the plane is the north
pole itself. However, since points on the plane with r → ∞ are mapped to points on the sphere closer
and closer to the north pole, we say that infinity is just a point and map it to the north pole.

Figure I: Stereographic projection of the extendend complex plane.2

N is the sphere’s north pole, O is the origin, z are points on the complex plane and Z are points on the sphere.

We may now introduce the Möbius transformation as an automorphism of the Riemann sphere. An
automorphism is a map that takes an object to itself while preserving its structure. A Möbius trans-
formation can be described in terms of four successive simpler maps:

• Translation z → ζ = z +A,

• Inversion z → ζ = 1/z,

• Rescaling z → ζ = Bz,

• Translation z → ζ = z + C.

Combining these and renaming the parameters we may write it in the form of equation (3.2). For
further information on mappings in the complex plane see, for instance, section 5 of [19].

2Image courtesy of http://mathematica.stackexchange.com/questions/23793/stereographic-projection.
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Appendix II: Symmetrized expression of pµ(z)

In this section we present the proof for the symmetrized expression in the punctures, σ’s, and the mo-
menta, k’s, of the polynomials pµ(z) that appear in the map from momentum space to the Riemann
sphere. In particular we prove the equivalence of equations (2.4) and (2.5).

Proposition:

∑
b∈A

kµb

n−2∑
m=0

σm
a {σ}n−1−m

b = kµa

n−1∑
m=0

σm
a {σ}n−1−m

a

Proof:

First of all, in analogy to eq. (2.3), define {σ}mb,a as

{σ}mb,a ≡ (−1)m
∑

{ai}⊆A\{a,b}

σa1σa2 ...σam .

We can then re-express (2.3) in terms of the above:

{σ}mb = −σa{σ}m−1
b,a + {σ}mb,a .

Note that for this expression to be valid for ∀m ∈ {1, ..., n− 1} we must require {σ}n−1
a,b = 0 as well as

{σ}0a,b = 1, or give a piecewise definition for m = 1, n− 1.

Hence:

pµ(σa) =
∑
b∈A

kµb

n−2∑
m=0

σm
a {σ}n−1−m

b = kµa

n−2∑
m=0

σm
a {σ}n−1−m

a +
∑
b∈A
b6=a

kµb

n−2∑
m=0

σm
a {σ}n−1−m

b =

= kµa

n−2∑
m=0

σm
a {σ}n−1−m

a +
∑
b∈A
b6=a

kµb

n−2∑
m=0

σm
a [−σa{σ}n−1−m−1

a,b + {σ}n−1−m
a,b ] .

The first term is like eq. (2.4) except for the missing m = n− 1 term. Consider now the second term.
For each m we have that the first term in the sum, call it (1), is of order m + 1 in σa, whereas the
second term, call it (2), is of order m in σa. It is then clear that:

(1)|m + (2)|m+1 = 0 .

Furthermore, we have (2)|m=0 = 0, as required above. Therefore, all terms cancel out except (1)|m=n−2

(since there is no (2)|m=n−1 to cancel it with). This leaves us with:

kµa

n−2∑
m=0

σm
a {σ}n−1−m

a +
∑
b∈A
b6=a

kµb σ
n−2
a [−σa{σ}0a,b] = kµa

n−2∑
m=0

σm
a {σ}n−1−m

a − σn−1
a

∑
b∈A
b6=a

kµb .

Now, using the null conserved momenta condition (written as
∑

b∈A
b 6=a

kµb = −kµa ), one recovers eq. (2.4),

completing the proof.
Q.E.D.
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Appendix III: The Scattering Equations

The proof here presented is for the CHY expression of the Scattering Equations. Following our
discussion of section 3, we impose the condition:

d

dz
p2(z) = 0 =⇒ p(z) · p′(z) = 0,

evaluated at the punctures (σa).

Proposition:

p(σa) · p′(σa) = 0 ⇐⇒ fa(σ, k) = 0, ∀a ∈ {1, ..., n}

Proof:

Using eq. (2.2) to write p(σa) and differentiating eq. (2.6) with respect to z to write p′(σa) we obtain:
(Note that one may use (2.6) for both, but this approach makes things more concise)

p(σa) · p′(σa) = kµa
∏
b∈A
b 6=a

(σa − σb) ·
∑
b∈A

kµb

n−2∑
m=0

mσm−1
a {σ}n−1−m

b =

=
∏
b∈A
b 6=a

(σa − σb)
∑
b∈A
b 6=a

ka · kb
n−2∑
m=1

mσm−1
a {σ}n−1−m

b .

As prompted in note 1 of reference [6], we add to the above the following term:∏
b∈A
b6=a

(σa − σb)
∑
b∈A
b 6=a

ka · kb(n− 1)σn−2
a .

Note that this is allowed since what we are adding is zero, explicitly:∑
b∈A
b 6=a

ka · kb = ka ·
∑
b∈A

kb = 0 ,

where we have used the massless condition in the first equality and the null conserved momenta con-
dition in the second one.

Therefore, we have:

∏
b∈A
b 6=a

(σa − σb)
∑
b∈A
b 6=a

ka · kb [(n− 1)σn−2
a +

n−2∑
m=1

mσm−1
a {σ}n−1−m

b ] .

Now use again the notation introduced in the previous proof:

∏
b∈A
b6=a

(σa − σb)
∑
b∈A
b 6=a

ka · kb [(n− 1)σn−2
a +

n−2∑
m=1

mσm−1
a (−σa{σ}n−1−m−1

a,b + {σ}n−1−m
a,b )] .

As before, call (1) the term of order m and (2) the term of order m− 1 in σa. Then, we have:

(1)|m + (2)|m+1 = −mσm
a {σ}n−1−m−1

a,b + (m+ 1)σm
a {σ}n−1−m−1

a,b = σm
a {σ}n−2−m

a,b ∀m ∈ {1, ..., n− 3} ,
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and the following from the left over terms in m = 1 and m = n− 2, respectively:

σ0
a{σ}n−1−1

a,b = {σ}n−2
a,b and − (n− 2)σn−2

a {σ}n−2−(n−2)
a,b = −(n− 2)σn−2

a .

Combining everything:

∏
b∈A
b 6=a

(σa−σb)
∑
b∈A
b6=a

ka ·kb [σn−2
a +

n−3∑
m=1

σm
a {σ}n−2−m

a,b +{σ}n−2
a,b ] =

∏
b∈A
b6=a

(σa−σb)
∑
b∈A
b 6=a

ka ·kb
n−2∑
m=0

σm
a {σ}n−2−m

a,b .

Now we have to recognize this summation as the product of (σa−σc)’s over all c’s except c = a, b. We
can then rewrite the above as:

(
∏
b∈A
b6=a

(σa − σb))
2
∑
b∈A
b 6=a

ka · kb
σa − σb

= 0 .

Finally, we obtain the Scattering Equations, since we are assuming the punctures to be distinct, mean-
ing the

∏
cannot be zero.

Q.E.D.
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Appendix IV: Proof of the Möbius invariance of the SE

In the present section, we explicitly show that the Scattering Equations (eq. (3.1)) are invariant under
Möbius transformations (equation (3.2), briefly discussed in Appendix I as well). For this reason we
say that Möbius transformations are a symmetry of the Scattering Equations.

Proposition:

fa(σ, k) = 0 ⇐⇒ fa(ζ, k) = 0, ∀a ∈ {1, ..., n} and ζa =
ασa + β

γσa + δ

Proof:

Plug equation (3.2) into (3.1):∑
b∈A
b 6=a

ka · kb
ζa − ζb

=
∑
b∈A
b 6=a

ka · kb
ασa+β
γσa+δ − ασb+β

γσb+δ

=
∑
b∈A
b 6=a

ka · kb
(ασa+β)(γσb+δ)−(ασb+β)(γσa+δ)

(γσa+δ)(γσb+δ)

=

∑
b∈A
b 6=a

ka·kb
(γσa + δ)(γσb + δ)

((((αγσaσb + βγσb + αδσa +��βδ −((((αγσaσb − βγσa − αδσb −��βδ
=
∑
b∈A
b6=a

ka·kb
(γσa + δ)(γσb + δ)

(αδ − βγ)(σa − σb)
.

The first term in both numerator and denominator is independent of b and therefore can be taken out
of the sum. Then, by adding and subtracting γσa, we obtain:

(γσa + δ)

(αδ − βγ)

∑
b∈A
b 6=a

ka · kb
(γσb − γσa + γσa + δ)

(σa − σb)
=

(γσa + δ)2

(αδ − βγ)
fa(σ, k)−

γ(γσa + δ)

(αδ − βγ)

∑
b∈A
b 6=a

ka · kb .

Now use the null conserved momenta condition
∑

b∈A
b 6=a

kµb = −kµa to rewrite it as:

(γσa + δ)2

(αδ − βγ)
fa(σ, k) +

γ(γσa + δ)

(αδ − βγ)
k2a ,

which is indeed zero if k2a = 0 (massless condition) and if fa(σ, k) = 0 (Scattering Equations).

Q.E.D.
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Appendix V: Second derivative of p(z)2

The algebra backing our discussion of subsection 3.2 is presented here. We compute an explicit
expression for the second derivative of p(z)2 evaluated at the punctures:

d2

dz2
p(z)2|z=σa = 0 → p′(σa)

2 + p(σa) · p′′(σa) = 0 .

The first term: p′(σa)
2

Recalling the expression for p′(σa) obtained by differentiating equation 2.6 we may write:

p′(σa)
2 =

∑
b,B∈A

kµb · kµB
n−2∑
m=1

mσm−1
a {σ}n−1−m

b

n−2∑
M=1

MσM−1
a {σ}n−1−M

B =

=
∑
B∈A

n−2∑
M=1

MσM−1
a {σ}n−1−M

B

∑
b∈A
b 6=B

kµb · kµB
n−2∑
m=1

mσm−1
a {σ}n−1−m

b .

This expression looks very similar to what we have encountered in the proof of the Scattering Equations,
but we must be careful because here we have b 6= B, not b 6= a. Therefore, we should distinguish between
the terms b 6= a,B and the term b = a 6= B, explicitly:

∑
B∈A

n−2∑
M=1

MσM−1
a {σ}n−1−M

B [
∑
b∈A

b6=a,B

kµb · kµB
n−2∑
m=1

mσm−1
a {σ}n−1−m

b + kµa · kµB
n−2∑
m=1

mσm−1
a {σ}n−1−m

a ] .

Consider now the first term in the square brackets. Similarly to what we have done in the proof for
the CHY expression of the Scattering Equations, we may add

∑
B∈A

n−2∑
M=1

MσM−1
a {σ}n−1−M

B

∑
b∈A

b 6=a,B

kµb · kµB(n− 1)σn−2
a ,

since it is zero. Adapting the result obtained there, we get:

∑
B∈A

n−2∑
M=1

MσM−1
a {σ}n−1−M

B

∑
b∈A

b6=a,B

kµb · kµB
n−2∑
m=0

σm
a {σ}n−2−m

a,b .

We can then repeat the procedure to the sum over M , which gives:

∑
b,B∈A
b,B 6=a

kµb · kµB
n−2∑
m=0

σm
a {σ}n−2−m

a,b

n−2∑
M=0

σM
a {σ}n−2−M

a,B ,

where I’ve also taken B 6= a, otherwise we are back in the other case. Finally we obtain:

(
∏
b∈A
b 6=a

(σa − σb))
2
∑

b,B∈A
b,B 6=a

kb · kB
(σa − σb)(σa − σB)

= 0 .

As already pointed out, the product cannot be zero for distinct puncutres. The sum is almost identical
to equation 1.15 of reference [15], which was introduced by Fairlie and Roberts, and which should
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vanish ∀σa, provided it vanishes sufficiently fast for σa → ∞ and that the Scattering Equations are
satisfied.

Similarly, the terms like b = a 6= B give:

∂

∂σa
(
∏
b∈A
b 6=a

(σa − σb))(
∏
b∈A
b 6=a

(σa − σb))
∑
b∈A
b 6=a

ka · kb
σa − σb

= 0 ,

which is zero provided the Scattering Equations are satisfied.

The second term: p(σa)p
′′(σa)

p(σa) · p′′(σa) =
∏
b∈A
b 6=a

(σa − σb)
∑
b∈A
b6=a

ka · kb
n−2∑
m=2

m(m− 1)σm−2
a {σ}n−1−m

b =

=
∏
b∈A
b6=a

(σa − σb)
∑
b∈A
b 6=a

ka · kb
n−2∑
m=2

m(m− 1)σm−2
a [−σa{σ}n−2−m

a,b + {σ}n−1−m
a,b ] .

Defining (1) and (2) the terms of order m− 1 and m− 2 respectively, we may write:

(1)|m + (2)|m+1 = (−m2 +m)σm−1
a {σ}n−2−m

a,b + (m2 +m)σm−1
a {σ}n−2−m

a,b = 2mσm−1
a {σ}n−2−m

a,b

∀m ∈ {2, ..., n− 3} .

The left over terms are:

(2)|m=2 = 2σ0
a{σ}n−3

a,b = 2{σ}n−3
a,b ,

(1)|m=n−2 = (n− 2)(n− 3)σn−4
a (−σa{σ}0a,b) = −(n2 − 5n+ 6)σn−3

a .

All together:

− (n2 − 5n+ 6)σn−3
a +

n−3∑
m=2

2mσm−1
a {σ}n−2−m

a,b + 2{σ}n−3
a,b .

Since the first term is independent of b and is pre-multiplied by
∑

b 6=a ka · kb (i.e. it is zero), we can

keep a factor of 2(n− 2)σn−3
a only and rewrite the whole expression as follow:

p(σa) · p′′(σa) =
∏
b∈A
b 6=a

(σa − σb)
∑
b∈A
b 6=a

ka · kb .
n−2∑
m=1

2mσm−1
a {σ}n−2−m

a,b ,

=⇒ p(σa) · p′′(σa) = 2
∏
b∈A
b6=a

(σa − σb)
∂

∂σa
[
∏
b∈A
b6=a

(σa − σb)
∑
b∈A
b 6=a

ka · kb
σa − σb

] .

Differentiating the product gives a term proportional to the Scattering Equations, which thus vanishes.
Differentiating the sum gives again something similar to equation (1.15) of reference [15], which van-
ishes as well without introducing new conditions.
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Appendix VI: Polynomial form of the Scattering Equations

The following is an explaination of the algebra of the proof presented by Dolan and Goddard in [15]
for the polynomial form of the Scattering Equations, which we discuss more qualitatively in section
4. For clarity we have divided their proof into two distinct propositions.

First proposition:

fa = 0, a ∈ A ⇐⇒ gm = 0, 2 ≤ m ≤ n− 2

Proof:

First of all we have to show that g−1, g0 and g1 vanish identically. In [15] DG explain this as a con-
sequence of the Möbius invariance by introducing U(σ, k) =

∏
a<b(σa−σb)

ka·kb and taking derivatives.
In truth this is quite easily showed directly from eq. (4.2) as well. Recall:

gm =
∑
a∈A

σm+1
a fa =

∑
a,b∈A
a6=b

σm+1
a

ka · kb
σa − σb

.

Rewrite gm renaming a to b and vice-versa:

gm =
∑
a,b∈A
a6=b

σm+1
b

ka · kb
σb − σa

= −
∑
a,b∈A
a6=b

σm+1
b

ka · kb
σa − σb

,

and therefore obtain:

gm =
1

2

∑
a,b∈A
a6=b

ka · kb
σm+1
a − σm+1

b

σa − σb
.

Now g−1 is obviously zero. The other two are given by:

g0 =
1

2

∑
a,b∈A
a6=b

ka · kb =
1

2

∑
a∈A

ka ·
∑
b∈A
b 6=a

kb = 0 ,

g1 =
1

2

∑
a,b∈A
a6=b

ka · kb
σ2
a − σ2

b

σa − σb
=

1

2

∑
a,b∈A
a6=b

ka · kb�
����(σa − σb)(σa + σb)

����σa − σb
=
∑
a,b∈A
a6=b

ka · kbσa =

=
∑
a∈A

σaka ·
∑
b∈A
b 6=a

kb = −
∑
a∈A

σak
2
a = 0 .

Where relabeling, the massless and null conserved momenta conditions are used as necessary.

Going back to equation (4.2), it can be rewritten in matrix form as:

gm = Σmafa ,

where Einstein’s summation convention is assumed and where Σma is defined as a N × N matrix
Σma = σm+1

a , −1 ≤ m ≤ n− 2. Explicitly:
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Σ =


1 1 1 . . . 1
σ1 σ2 σ3 . . . σn
σ2
1 σ2

2 σ2
3 . . . σ2

n
...

...
...

. . .
...

σn−1
1 σn−1

2 σn−1
3 . . . σn−1

n

 .

This type of matrices are named after the French mathematician Alexandre-Thophile Vandermonde
and their determinant is a well known result [18]:

Det(Σ) =
∏

1≤a<b≤n

(σa − σb) .

It vanishes only for degenerate punctures, which we excluded by assumption. We can intuitively see
that this is the correct form for the determinant because σa = σb, a 6= b is the condition that makes
two columns of Σ identical. A more direct proof involves the following steps:
• Subtract to each row the previous one multiplid by σ1

|Σ| =

∣∣∣∣∣∣∣∣∣∣∣

1 1 1 . . . 1
0 σ2 − σ1 σ3 − σ1 . . . σn − σ1
0 σ2(σ2 − σ1) σ3(σ3 − σ1) . . . σn(σn − σ1)
...

...
...

. . .
...

0 σn−2
2 (σ2 − σ1) σn−2

3 (σ3 − σ1) . . . σn−2
n (σn − σ1)

∣∣∣∣∣∣∣∣∣∣∣
=

• Take factors of (σj − σ1) out of the matrix from each column:

=

∣∣∣∣∣∣∣∣∣∣∣

1 (σ2 − σ1)
−1 (σ3 − σ1)

−1 . . . (σn − σ1)
−1

0 1 1 . . . 1
0 σ2 σ3 . . . σn
...

...
...

. . .
...

0 σn−2
2 σn−2

3 . . . σn−2
n

∣∣∣∣∣∣∣∣∣∣∣
n∏

j=2

(σj − σ1) =

=

∣∣∣∣∣∣∣∣∣
1 1 . . . 1
σ2 σ3 . . . σn
...

...
. . .

...
σn−2
2 σn−2

3 . . . σn−2
n

∣∣∣∣∣∣∣∣∣
n∏

j=2

(σj − σ1)

• Repeat.

The consequence of Det(Σ) 6= 0 is that the only solution to gm = 0 is the trivial one fa = 0, i.e.
gm = 0 if and only if fa = 0.

Q.E.D.
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Second proposition:

h̃m = 0 ⇐⇒ gm = 0, 2 ≤ m ≤ n− 2

Proof:

Start by considering the following expression:∑
a0,a2,...,am∈A

aiuneq.

σa2 ...σamσ
2
a0fa0 =

∑
a0,a2,...,am∈A

aiuneq.

σa2 ...σamσ
2
a0

∑
a1∈A
a1 6=a0

ka0 · ka1
σa0 − σa1

=

=
∑

a0,a1,...,am∈A
aiuneq.

ka0 · ka1σ2
a0σa2 ...σam

σa0 − σa1
+ (m− 1)

∑
a0,a1,...,am−1∈A

aiuneq.

ka0 · ka1σ2
a0σa1 ...σam−1

σa0 − σa1
=

The first term is the case where a1 is different from all other ai with 2 ≤ i ≤ m, whereas the second
term is the case where a1 is equal to one of the (m− 1) a’s, and hence the multiplicative pre-factor.

=
∑

a0,a1,...,am∈A
aiuneq.

ka0 · ka1σa0σa2 ...σam +
m− 1

2

∑
a0,a1,...,am−1∈A

aiuneq.

ka0 · ka1σa0σa1 ...σam−1 =

This is obtained by performing polynomial division, esplicitelly:

σ2
a0

σa0 − σa1
= σa0 + σa1 +

σ2
a1

σa0 − σa1
== relabeling =⇒

σ2
a0

σa0 − σa1
= σa0 ,

which gives the first term, and:

σ2
a0σa1

σa0 − σa1
= σa0σa1 +

σa0σ
2
a1

σa0 − σa1
== relabeling =⇒

σ2
a0σa1

σa0 − σa1
=

1

2
σa0σa1 ,

which gives the second one.
Now perform the sum over a1 in the first term. By writing it as∑

a1∈A
a1 6=ai

i=0,2,3,...,n

ka1 = −ka0 −ka2 − ka3 · · · − kan︸ ︷︷ ︸
(n−1)terms

,

and relabeling, we obtain: (k2a0 = 0 is also used)

= −m− 1

2

∑
a0,a1,...,am−1∈A

aiuneq.

ka0 · ka1σa0σa1 ...σam−1 = − 1

m

∑
a1,a2,...,am∈A

aiuneq.

m∑
i,j=1
i<j

kai · kajσa1σa2 ...σam =

where the second equality is obtained by simply relabeling and counting: the
∑

i,j gives m(m−1)
2 terms

like the previous ones.
Now introduce the following short-hand notation: ka1a2a3...am = ka1 +ka2 +ka3 + · · ·+kam. This allows
to rewrite the above as:

= − 1

2m

∑
a1,a2,...,am∈A

aiuneq.

k2a1a2a3...amσa1σa2 ...σam =
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and finally:

= −(m− 1)!

2

∑
S⊂A
|S|=m

k2SσS .

Since the two are identical, up to counting. The
∑

a1,a2,...,am∈A
aiuneq.

has n(n− 1)(n− 2) . . . (n−m+ 1) =

n!
(n−m)! terms, whereas the

∑
S⊂A
|S|=m

has Cn
m = n!

m!(n−m)! terms.

Summing up: ∑
a0,a2,...,am∈A

aiuneq.

σa2 ...σamσ
2
a0fa0 = −(m− 1)!

2
h̃m . (II.2.1)

Now relating the above sum to gm will give a relation between h̃m and gm.

∑
a0,a2,...,am∈A

aiuneq.

σa2 ...σamσ
2
a0fa0 =

∑
a2,...,am∈A
aiuneq.

σa2 ...σam
∑
a0∈A

σ2
a0fa0 − (m− 1)

∑
a0,a3,...,am∈A

aiuneq.

σa3 ...σamσ
2
a0fa0 .

DG reasoning here is that the sum over a0 not equal to the other a’s is equal to the sum over all a0
minus the sum of a0 equal to the other a’s (of which there are m− 1). This procedure can be repeated:

=
∑

a2,...,am∈A
aiuneq.

σa2 ...σam
∑
a0∈A

σ2
a0fa0 − (m− 1)[

∑
a3,...,am∈A
aiuneq.

σa3 ...σam
∑
a0∈A

σ2
a0fa0−

(m− 2)
∑

a0,a4,...,am∈A
aiuneq.

σa4 ...σamσ
2
a0fa0 ] = · · · =

In general:

=

m+1∑
r=2

(−1)r(m− 1)!

(m− r + 1)!

∑
ar,...,am∈A
aiuneq.

σar ...σam
∑
a0∈A

σr
a0fa0 =

We want to relate this to equation (4.2). Let r → r + 1 and recall that g1 is identically zero:

=

m∑
r=2

(−1)r+1(m− 1)!

(m− r)!

∑
ar+1,...,am∈A

aiuneq.

σar+1 ...σamgr =

= (m− 1)!

m∑
r=2

(−1)r+1ΣA
m−rgr , (II.2.2)

where ΣA
r is defined as necessary:

ΣA
r =

∑
S⊂A
|S|=r

σS =
1

r!

∑
a1,...,ar∈A
aiuneq.

σa1 ...σar .

Now we can straightforewardly combine (II.2.1) with (II.2.2) to yield:

24



h̃m =

m∑
r=2

(−1)rgrΣ
A
m−r, 2 ≤ m ≤ n− 2 . (II.2.3)

In matrix form: 
h̃2
h̃3
h̃4
...

h̃n−2

 =


2ΣA

0 0 0 . . . 0
2ΣA

1 −2ΣA
0 0 . . . 0

2ΣA
2 −2ΣA

1 2ΣA
0 . . . 0

...
...

...
. . .

...
2ΣA

n−4 −2ΣA
n−5 2ΣA

n−6 . . . 2(−1)n−2ΣA
0




g2
g3
g4
...

gn−2

 .

The determinant - as for any lower triangolar matrix - is simply the product of the elements in the
main diagonal. Since ΣA

0 = 1 this determinant is non-zero and therefore the h̃’s are equivalent to the
g’s (and subsequently to the fa’s).

Q.E.D.
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Appendix VII: Program to solve the Scattering Equations

The aim of this section of the appendix is to present work done in order to obtain solutions to the
Scattering Equations and hopefully convey to the reader the scaling of the complexity of the problem
as a function of the number of particles n.

The first version of the program followed the general n elimination theory algorithm very closely. It
explicitly construed the vector V of the (n− 3)! variables we wish to eliminate and, by taking partial
derivatives, obtained the (n− 3)!× (n− 3)! matrix whose determinant is the equation we are looking
for. We later modified it to exploit both the recursive relation and the cyclic permutation structure
of the matrix. The difference turned out to be huge, as shown in the following table.

# of particles n size of the matrix timing 1st version timing 2nd version
6 6× 6 < 0.1s < 0.1s
7 24× 24 0.2s < 0.1s
8 120× 120 13s 0.7s
9 720× 720 38m 4s
10 5040× 5040 > 2h 2m40s

Table 1: Comparison of the time required by the two versions of the Mathematica program to obtain

the matrix whose determinant gives the solutions of the Scattering Equations.

The program itself and sample outputs for the n=7 and n=8 case are shown in the next pages. The
outputs shown consist of, in order: the set of cyclic permutation for the rows of the matrix; the matrix
itself in the abbreviated notation used in section 53; the Scattering Equations; and the first set of rows
of the matrix written explicitly in terms of the Scattering Equations and their derivatives.

3For the n=8 case only the first half of the matrix is shown. Showing the full output would make it too small to read.
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The program:

CHOOSE HOW MANY PARTICLES n 4
n 7;

RECURSIVE RELATION FOR THE MATRIX
M i : If i 4, 1,

ArrayFlatten Table If r c r c 1 , If r c, M i 1 , i 3 M i 1 ,
Table 0, l, i 5 , m, i 4 , r, i 4 , c, i 3 , 2

Ma M n ;
MatrixForm Ma

CALCULATE THE PERMUTATION ASSOCIATED WITH
EACH SET OF ROWS BY LOOKING AT THE POSITION OF "1"

P 0 ;
For i 2, i n 4 , i ,
For j 1, j n 3 , j ,

If Extract Extract Ma, i , j 1, P Append P, j 1 ;
Break ; ;

Print P

TAKES THE FIRST ROW OF THE MATRIX, WHICH IS ALL WE NEED
R1 Extract Ma, 1 ;

WRITE DOWN EXPLICITLY THE SCATTERING EQUATIONS
SINCE 1 AND n 0 DEFINE THE SET "A" AS FOLLOWS:

A 2, 3 ;
For nn 4 , nn n, nn , A Union A, nn

WRITE hm WITH SET NOTATION
For m 1, m n 3 , m ,
hm 0;

this is a sum over all possible subsets of A
For j 1, j Binomial n 2 , m , j ,

hm hm kUnion 1 ,Extract Subsets A, m,m , j ^2 Extract Subsets A, m,m , j

CLEAR THE NOTATION hm ARE WRITTEN IN
f1 S :
Product Extract Extract Subsets S, 1,1 , i , 1 , i, 1, Length Subsets S, 1, 1

f0 kS ^2 T : kS^2 f1 T
For m 1, m n 3 , m ,
hm Map f0, hm ;
Print hm ;

COMPUTES THE FIRST n 3 ROWS OF THE FINAL MATRIX
IN TERMS OF THE DERIVATIVES OF THE SCATTERING EQUATIONS

Clear Mb
Mb 0 ;
For j 1, j n 3 , j ,

Printed by Wolfram Mathematica Student Edition
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For i 1, i n 3 , i ,
If Extract R1, i 0, Mb Append Mb, 0 , Mb Append Mb, hj ,
t hj;
For l 1, l n 3 , l ,
If D Extract R1, i , l 0, t D t, l , , t D t, l
;
Mb Append Mb, t

Mb Drop Mb, 1 ;
Mb Partition Mb, n 3 ;
MatrixForm Mb

SIMPLIFIES THE EXPRESSION BY SETTING ALL
PUNCTURES EXCEPT THE TWO WE ARE INTERESTED IN TO ZERO

Mb Flatten Mb ;
For j 1, j n 3 , j ,
For i 1, i n 3 , i ,
If Extract Mb, j 1 n 3 i 0, , ,
For l 1, l n 3 , l ,
Mb ReplacePart Mb,

j 1 n 3 i Extract Mb, j 1 n 3 i . l 0

Mb Partition Mb, n 3 ;
MatrixForm Mb

RECONSTRUCTS THE FULL MATRIX THANKS
TO THE PREVIOUSLY COMPUTED PERMUTATIONS

Mc Mb;
For j 2, j n 4 , j ,
For i 1, i n 3 , i ,
Mc Append Mc, RotateRight Extract Mb, i , Extract P, j

MatrixForm Mc

2 Solving the scattering equations v2.nb

Printed by Wolfram Mathematica Student Edition
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Output for n=7 (a) and partial output for n=8 (b):

{0,
2,

6,
8,

12
,

14
,

24
,

26
,

30
,

32
,

36
,

38
,

48
,

50
,

54
,

56
,

60
,

62
,

72
,

74
,

78
,

80
,

84
,

86
}

H
H

2
H

3
H

2
3

0
0

4
H

H
2

4
H

3
4

H
2

3
4

0
0

0
0

0
0

0
0

0
0

0
0

0
0

H
5

H
2

5
H

3
5

H
2

3
5

0
0

H
4

5
H

2
4

5
H

3
4

5
H

2
3

4
5

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
H

H
2

H
3

H
2

3
0

0
4

H
H

2
4

H
3

4
H

2
3

4
0

0
0

0
0

0
0

0
0

0
0

0
0

0
5

H
H

2
5

H
3

5
H

2
3

5
0

0
4

H
5

H
2

4
5

H
3

4
5

H
2

3
4

5
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

H
0

0
2

H
H

3
H

2
3

0
0

H
4

H
2

4
H

3
4

H
2

3
4

0
0

0
0

0
0

0
0

0
0

0
0

0
0

5
H

H
2

5
H

3
5

H
2

3
5

0
0

H
4

5
H

2
4

5
H

3
4

5
H

2
3

4
5

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
H

2
H

H
3

H
2

3
0

0
4

H
H

2
4

H
3

4
H

2
3

4
0

0
0

0
0

0
0

0
0

0
0

0
0

0
5

H
H

2
5

H
3

5
H

2
3

5
0

0
4

H
5

H
2

4
5

H
3

4
5

H
2

3
4

5
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

H
2

H
H

3
H

2
3

0
0

H
4

H
2

4
H

3
4

H
2

3
4

0
0
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